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Approximate Bogomol’nyi-Prasad-Sommerfield States
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We consider dimensionally reduced three-dimensional supersymmetric Yang-Mills–Chern-Simons
theory. Although the N � 1 supersymmetry of this theory does not allow local massive Bogomol’nyi-
Prasad-Sommerfield (BPS) states, we find approximate BPS states which have nonzero masses that are
almost independent of the Yang-Mills coupling constant and which are a reflection of the massless BPS
states of the underlying N � 1 super–Yang-Mills theory. The masses of these states at large Yang-
Mills coupling are exactly at the n-particle continuum thresholds. This leads to a relation between their
masses at zero and large Yang-Mills coupling.
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such theories are also interesting in their own right. A
Chern-Simons (CS) theory can be used to study many

work, see [7]), as well as the dimensionally reduced
SYM-CS theory [7].
Bogomol’nyi-Prasad-Sommerfield (BPS) states play an
important role in modern quantum field theory for a
variety of reasons. In particular, their property of having
masses which are independent of the coupling is a very
useful tool, because it allows the evaluation of the spec-
trum in the nonperturbative region where it is otherwise
difficult if not impossible to solve the theory. BPS satu-
rated states arise because the supersymmetry protects the
masses of states which are destroyed by a linear combi-
nation of the supercharges while forcing these masses to
be equal to the central charge in appropriate units. It is
well known that one must have at least N � 2 super-
symmetry to have a nonzero central charge and therefore
massive BPS saturated states. The one exception to this is
solitons, which are unrelated to the solutions we are
considering [1]. Many of the more interesting field theo-
ries, at least from the phenomenological point of view,
only have N � 1 supersymmetry, and this magical prop-
erty of BPS states is of no help in calculating the massive
spectrum in the nonperturbative regime.

We will show by explicit demonstration that it is pos-
sible to find approximate BPS states in theories with
N � 1 supersymmetry. These are states with masses
that are to a very good approximation independent of
the coupling but are not true BPS states. We will show
that the origin of these states is the presence of massless
BPS states in the closely related N � 1 supersymmetric
Yang-Mills (SYM) theories. These theories have BPS
saturated states that are massless and are destroyed by
one of the supercharges.

For this demonstration, we consider dimensionally
reduced SYM–Chern-Simons theory. This theory has the
advantage that the partons are given a bare mass without
breaking the supersymmetry, which makes the theory
particularly suitable for numerical studies. However,
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interesting phenomena, such as [2] the quantum Hall
effect, Landau levels, nontrivial topological structures,
vortices, and anyons. According to Witten [3], it is pos-
sible that string field theory is essentially a noncommu-
tative CS theory. This idea led to a conjecture by Susskind
[4] that relates string theory to the fractional quantum
Hall effect. The SYM-CS theories are particularly re-
markable. As is well known, there is a finite anomaly
that shifts the CS coupling [5]. Moreover, Witten [6] has
conjectured that this theory spontaneously breaks super-
symmetry for some values of the CS coupling.

In this Letter, we briefly discuss SYM-CS theory in 2�
1 dimensions but then dimensionally reduce it to two
dimensions by requiring all of the fields to be independent
of the transverse coordinate. This reduction eliminates
many of the most interesting aspects of CS theory, in-
cluding the quantization of the CS coupling, but does
preserve the fact that the CS term simulates a mass for
the theory. The effective mass leads to QCD-like proper-
ties for the theory, which are discussed in [7].

The numerical method we use to solve the SYM-CS
theory is supersymmetric discrete light-cone quantiza-
tion (SDLCQ). This method can be used to solve any
theory with enough supersymmetry to be finite. By the
use of ordinary discrete light-cone quantization (DLCQ)
[8,9] we can construct a finite-dimensional representation
of the superalgebra [10]. From this representation of the
superalgebra, we construct a finite-dimensional Hamil-
tonian which we diagonalize numerically. Unlike direct
discretization of the Hamiltonian, this construction au-
tomatically preserves supersymmetry exactly. We repeat
the construction for larger and larger representations and
extrapolate the solution to the continuum.We have already
used this method to solve �1� 1� and �2� 1�-dimensional
SYM theories [11–15] (for additional references to this
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In constructing the discrete approximation, we drop
the longitudinal zero-momentum mode. For some discus-
sion of dynamical and constrained zero modes, see the
review [9] and previous work [11,12]. Inclusion of these
modes would be ideal, but the techniques required to
include them in a numerical calculation have proven to
be difficult to develop, particularly because of nonlin-
earities. For DLCQ calculations that can be compared
with exact solutions, the exclusion of zero modes does
not affect the massive spectrum [9]. In scalar theories, it
has been known for some time that constrained zero
modes can give rise to dynamical symmetry breaking
[9], and work continues on the role of zero modes and near
zero modes in these theories [16].

To understand the properties of dimensionally reduced
SYM-CS theory, we will need to review earlier results of
similarly reduced SYM theory. This N � 1 SYM theory
in 1� 1 dimensions is a stringy theory, in the sense that
the low-mass states are dominated by Fock states with
many constituents. As the size of the discrete superalge-
bra representation is increased, states with lower masses
and more constituents appear [14,15]. In addition, this
theory has a well-defined number of massless BPS states.

We begin by considering N � 1 supersymmetric CS
theory in 2� 1 dimensions. The Lagrangian of this
theory is

L � Tr
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where 	 is the CS coupling. The two components of the
spinor � � 2�1=4� �� are in the adjoint representation, and
we will work in the large-Nc limit. The field strength and
the covariant derivative are F�� � @�A� � @�A� �
ig�A�; A�� and D� � @� � ig�A�; �, respectively. Super-
symmetric variations of the fields lead to the supercharge
components

Q� � �i23=4
Z
d2x �@�A� � @�A� � ig�A�; A���;

Q� � �i25=4
Z
d2x �@�A? � @?A� � ig�A�; A?��:

(2)

The supercharge fulfills the supersymmetry algebra,

fQ
; Q
g � 2
���
2

p
P
; fQ�; Q�g � �4P?: (3)

In order to express the supercharge in terms of the
physical degrees of freedom, we use constraints which
are obtained from the equations of motion to eliminate
the nondynamical fields � and A�. In light-cone gauge,
A� � 0, we reduce the theory dimensionally to two di-
mensions by setting � � A? and @? ! 0 for all fields.
This yields, from Eq. (2),
181602-2
Q� � 23=4g
Z
dx�

�
i��; @��� � 2  �

	
g
@��

�
1

@�
 :

(4)

To discretize the theory, we impose periodic boundary
conditions on the boson and fermion fields alike and
obtain expansions of the fields �ij and  ij in terms of
discrete momentum modes Aij�n� andBij�n�, respectively.
The positive integers n correspond to discrete longitu-
dinal momenta k� � n�=L � nP�=K, where L is a lon-
gitudinal length scale, P� is the total momentum, and K
is a positive integer that determines the resolution. (In
DLCQ, K is known as the harmonic resolution [8].) The
positivity of n guarantees that the number of partons in a
Fock state is bounded byK. The discrete version of the CS
part of the supercharge is

Q�
CS �

�
2�1=4
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X
n
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n

p �Ay�n�B�n� � By�n�A�n��:

(5)

The continuum limit is the limit where K ! 1.
Of the two contributions to the supercharge, Q�

SYM and
Q�

CS, the former is imaginary and the latter real. Thus, the
usual eigenvalue problem,

2P�P�j’i �
���
2

p
P��gQ�

SYM � 	Q�
CS�

2j’i � M2
nj’i;

(6)

has to be solved by using fully complex methods to
retrieve the mass eigenvalues Mn.

We retain the Z2 symmetry associated with the orien-
tation of the large-Nc string of partons in a state [17]. It
gives a sign when the color indices are permuted

Z2:Aij�k� ! �Aji�k�; Bij�k� ! �Bji�k�: (7)

We reduce the numerical effort by using this symmetry to
block diagonalize the Hamiltonian matrix. Eigenstates
will be labeled by the Z2 sector in which they appear.

It is interesting to note that the pure SYM supercharge
is purely imaginary. Consequently, the lowest finite-
dimensional representation of the superalgebra is four-
dimensional, and there must be an exact fourfold mass
degeneracy. On the other hand, the full SYM-CS super-
charge is complex, and the lowest complex representation
of the superalgebra is two-dimensional. Therefore the
exact degeneracy only has to be twofold, which is what
we find in our numerical results.

We have converted the mass eigenvalue problem,
Eq. (6), to a matrix eigenvalue problem by introducing
a discrete basis where the longitudinal momentum opera-
tor P� is diagonal. To obtain the spectrum of the
SYM-CS theory, we diagonalize the Hamiltonian P� �
�gQ�

SYM � 	Q�
CS�

2=
���
2

p
.

The low-energy spectrum can be fit to M2 � M2
1 �

b�1=K�, where M2
1 and b are adjustable parameters. For a
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FIG. 1. Bosonic spectrum at K � 9 of the two-dimensional
theory in units of 	2 as a function of the gauge coupling g

������
Nc

p

at fixed Chern-Simons coupling 	 for the (a) Z2 even sector and
(b) Z2 odd sector. The enlarged plots are of the lowest states in
the two sectors.
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detailed discussion of these fits to the present theory, see
Ref. [7]. The CS term in this theory effectively generates a
mass proportional to the CS coupling. Therefore, we
expect that the low-mass states will have only a few
partons, reminiscent of QCD. This is interesting and
important because it stands in stark contrast to N � 1
SYM theory, which is very stringy and has a large num-
ber of low-mass states with a large number of partons.

From the structure of the Hamiltonian P� �
�gQ�

SYM � 	Q�
CS�

2=
���
2

p
, we expect that, as a function of

g and 	, the spectrum of this theory will grow quadrati-
cally in both variables. At fixed g as a function of 	, the
spectrum behaves exactly as expected [7]. In Fig. 1, we
see that at fixed 	 the masses of most of the states also
grow quadratically in g. There are, however, a number of
states which behave very differently, and it is on these
states that we will focus our attention.

First, we need a detailed understanding of the spectrum
at g � 0, because we will see that the theory has a new
duality which relates the spectrum at g � 0 to that at g �
1 at fixed 	. The Hamiltonian at g � 0 is the square of
the CS supercharge, which is simply the Hamiltonian of
free fermions and bosons with mass 	. In DLCQ, the free
n-particle spectrum at resolution K is given by

M2
n�K� � K	2

 Xn�1

i�1

1

ni
�

1

K �
P
n�1
i�1 ni

!
; (8)

where ni�=L is the longitudinal momentum of the ith
particle. For example, at K � 3 the two-parton state has a
mass squared of M2 � 4:5 in units of 	2, while at K � 4
there are two two-parton states with eigenvalues M2 �
4:0 and M2 � 5:33 in the same units. These states repre-
sent a discrete approximation of the two-particle contin-
uum, which has its threshold at M2 � 4 for even K and at
M2 � 4=�1� 1=K2� for K odd. The threshold for the
n-particle continuum is at M2 � n2. It is exactly repro-
duced at K � nm, with m a positive integer, and ap-
proaches this value in the continuum limit otherwise.

We will focus on the states whose energy remains al-
most constant with increasing g

������
Nc

p
. These are the states

that we classify as approximate BPS states. They cannot,
of course, be true BPS states because the theory under
consideration has an N � 1 supersymmetry and can
have only massless BPS states. Rather, these states are a
reflection of the massless BPS states that we found in the
pure SYM theory in two dimensions [14]. (They are also
present in the �2� 1�-dimensional SYM theory [12,13].)

In the region where 	=g
������
Nc

p
is small, we can under-

stand the connection of these states to the massless BPS
states of pure SYM by doing simple perturbation theory
about the SYM theory. We rewrite the eigenvalue Eq. (6)
by taking out a factor of g2 to obtain�

1������
Nc

p Q�
SYM �

	
g

������
Nc

p Q�
CS

�
2
j�ni � Enj�ni; (9)
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with En � M2
n=

���
2

p
g2NcP

�. We take �Q�
SYM�

2 to be the
unperturbed Hamiltonian and look for perturbations of
the BPS states j ni of the pure SYM theory. Without loss
of generality, we assume that they are bosons. (There is a
set of massless BPS fermions as well.) The massless BPS
states are approximate eigenstates of the number operator
with ‘‘eigenvalues’’ n � 2 to K, and we use n to label the
�K � 1�-fold degenerate bound states. (This is true to the
numerical accuracy of this calculation, but we have
181602-3
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reason to believe that there may be small additional
corrections.) Of course, the zeroth order energy in the
perturbation expansion vanishes. The important point is
that the first-order corrections in the degenerate BPS
subspace are determined by the matrix elements
h njfQ�

SYM; Q
�
CSgj mi, and they vanish as well. From

this, we see that the leading order correction to the energy
is of order �	=g

������
Nc

p
�2, and therefore the perturbative

expansion for En can be written as

g2NcEn � 	2E�2�
n �O

�
	3

g
������
Nc

p

�
: (10)

Thus, the masses of these states are approximately inde-
pendent of g for small 	=g

������
Nc

p
. This is exactly what we

see in Fig. 1. In particular, the detailed plots of the lowest
states show a 1=g convergence of the mass towards the
asymptotic value E�2�

n � n2.
We return now to the new duality that these states

exhibit. In the numerical calculations, we find that E�2�
n

is independent of the resolution K. Therefore, at large
g2Nc these states are exact threshold bound states, again
independent of the resolution. The unperturbed massless
BPS states j ni of the pure SYM theory are, to a good
approximation, diagonal in particle number and have n
partons. Therefore, it might not seem surprising that at
g2Nc ! 1 the ‘‘BPS-like’’ states are threshold bound
states. They are, however, threshold bound states with a
special twist. Consider, for example, the simplest case
with harmonic resolution K � 3. The discrete two-
particle threshold is at M2 � 4:5 in units of 	2.
However, at g2Nc ! 1 the ‘‘BPS-like’’ bound-state
mass squared is M2 � 4:0. This is the true threshold,
and not the discrete threshold for resolution K � 3 where
the calculation was performed. Therefore, at resolution
K � 3 and g2Nc ! 1, this bound state is below the
discrete threshold. From a detailed inspection of the
mass matrix, we find that mixing between the dominant
two-particle content and a very small three-particle con-
tent is essential for this to occur. The existence of this
small three-particle content is a consequence of a theorem
proven in Ref. [15], which states that a pure n-parton state
cannot exist in two-dimensional supersymmetric field
theories. For even values of the resolution, the discrete
threshold is the correct threshold, and these ‘‘BPS-like’’
states are exact threshold bound states. For odd resolution,
the discrete threshold approaches the correct threshold as
we increase the resolution. The general statement of the
new duality is that it relates the masses of these approxi-
mate BPS states at g2Nc � 0 and at 1 by

lim
K!1

En�g
2Nc � 0� � lim

g
�����
Nc

p
!1

En�g
2Nc�: (11)

In summary, we have found that, while N � 1 super-
symmetric theories cannot have local massive BPS states,
they can have approximate BPS states whose masses are
nearly independent of the Yang-Mills couplings. The ex-
181602-4
istence of these states holds out the prospect of allowing
one to extrapolate part of the massive spectrum of an
N � 1 supersymmetric theory into the strong-coupling
regime in phenomenologically interesting theories.

These approximate BPS states occur because N � 1
SYM theory has a set of massless BPS states. Using
ordinary perturbation theory, we showed that at small
	=g

������
Nc

p
these approximate BPS bound states are a re-

flection of the massless BPS bound states of the SYM
theory. Finally, we found that in the limit of infinite
coupling g these states are threshold bound states which
in turn leads to a duality relation of the spectrum at
g2Nc � 0 and 1.

Since these BPS states are also present in the �2�
1�-dimensional SYM theory, we expect to see their re-
flection in the �2� 1�-dimensional CS theory. A study of
this theory is underway.
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