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Ramsey Fringes in a Bose-Einstein Condensate between Atoms and Molecules
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In a recent experiment, a Feshbach scattering resonance was exploited to observe Ramsey fringes in
a 85Rb Bose-Einstein condensate. The oscillation frequency corresponded to the binding energy of the
molecular state. We show that the observations are remarkably consistent with predictions of a
resonance field theory in which the fringes arise from oscillations between atoms and molecules.
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the Feshbach resonance. Such a resonance arises when a
bound state (molecular state) lies near the threshold of the

Fock-Bogoliubov (HFB) equations of motion. We
define expectation values for the atomic and molecular
Interest in the physics of ultracold molecules has been
growing considerably in the past few years [1,2]. One of
the goals has been the creation of a molecular Bose-
Einstein condensate (BEC). In a recent experiment at
JILA, performed by Donley et al. [3], a coherence be-
tween atoms and molecules was demonstrated in a BEC
of 85Rb atoms. In this experiment, two magnetic field
pulses were applied to the condensate, and oscillations
were observed in the population of two spatially distin-
guishable components (after expansion) as a function of
the pulse separation time. One of the components, the
‘‘remnant’’ atoms, had a similar spatial profile to the
original BEC. This was in contrast to a second compo-
nent, the ‘‘burst’’ atoms, which moved away from the
remnant having gained a considerable amount of energy.
In addition, there was a missing fraction of atoms unac-
counted for after the pulse sequence. Significantly, the
frequency of the population oscillations corresponded to
the binding energy of the highest lying molecular state.

This observation followed other remarkable experi-
ments carried out in the same group. The collapse of a
BEC was studied when a Feshbach resonance was used to
create a large negative scattering length [4]. Because of
the rather violent destruction of the collapsing conden-
sate, this effect was dubbed a ‘‘Bosenova’’ in analogy to a
supernova explosion. In a precursor experiment to the one
we consider here, a single strong-coupling field pulse was
applied, and there remnant and burst atoms were also
observed [5].

In this Letter, we describe the most recent JILA ex-
periment by a resonance field theory that has been devel-
oped over the last two years [6–8]. This mean-field theory
of dilute atomic gases goes beyond the level of the Gross-
Pitaevskii equation [9,10] to include the essential pairing
physics necessary to describe resonances in the two-body
scattering. In the case of a Fermi gas it was applied to
describe superfluidity close to a Feshbach resonance.
Here, however, we are able for the first time to compare
this approach with experimental data, and we obtain
remarkable agreement with the observations.

A critical ingredient of the theory is the description of
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collision continuum. This bound state belongs effectively
to a channel which is energetically closed. In a system of
two rubidium atoms, the position of this bound state de-
pends on magnetic field, due to hyperfine and Zeeman
interactions. The Feshbach resonance gives rise to a dis-
persive behavior of the scattering length, which can be
formulated accurately as a�B� � abg�1� �B=�B� B0��.
Here abg is the background scattering length, �B is the
width of the resonance, and B0 is the field value where the
scattering length is infinity. The magnetic field can be
easily converted into an energy detuning of the molecular
state from threshold by the relation �0 � �B� B0���,
where �� is the difference in magnetic moments of the
energetically open and closed channels. In our theory, we
treat the closed channel explicitly by using molecular
field operators and ascribing a coupling to the continuum
for this molecular state.

The Hamiltonian for the resonance system is given by

ĤH �
Z
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a �x�Ha�x� ̂ a�x� �  ̂ y
m�x�Hm�x� ̂ m�x��
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m�X12�g�x12� ̂ p�x2; x1� � H:c:�;

(1)

where the field operators  ̂ y
a �x� and  ̂ y

m�x� create an atom
or molecule at position x, and x12 � x1 � x2 and X12 �

�x1 � x2�=2, and  ̂ p�x2; x1� �  ̂ a�x2� ̂ a�x1�. The free
Hamiltonians Ha�x� � � �h2r2=2m and Hm�x� �
� �h2r2=4m� � for atoms with mass m and molecules
with mass 2m include the detuning �. Atom-molecule
collisions and molecule-molecule collisions give higher
order corrections. The potential terms V�x12� and g�x12�
have to be chosen such that both the scattering physics
and the molecular binding energies are correctly de-
scribed. We verify this by noting that the scattering
equations are included in this resonance mean-field
theory [8].

Starting from this Hamiltonian we obtain the Hartree-
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FIG. 1. Binding energies as a function of magnetic field. The
solid line is the coupled channels result for the most accurate
rubidium interactions. This is compared with the binding
energy resulting from the contact scattering model as de-
fined in [8], with abg � �450a0 (where a0 is the Bohr radius),
��=-2.23�B (with �B the Bohr magneton), and g0 � 3:11�
10�38 Jm3=2 (open squares).
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condensates �a�x� � h ̂ ai and �m�x� � h ̂ mi. Moreover,
we define a 2� 2 density matrix G for the fluctuating
components of the atomic field operators �̂�a �
 ̂ a � h ̂ ai, which describe the noncondensed atoms,
where the elements of this matrix can be given in terms
of the normal density GN�x; y� � h�̂�y

a �y��̂�a�x�i and the
anomalous density GA�x; y� � h�̂�a�y��̂�a�x�i [6].

To begin with, we consider a gas which is homogeneous
and isotropic, which results in a translationally invariant
system. This implies that the single particle fields are
constant in space and that the two-particle fields depend
on the coordinate difference r � jx� yj only. We substi-
tute local interactions for the potential terms: V�r� �
V��r� and g�r� � g��r�, where V and g are constants.
The HFB equations for the density matrix G and for the
condensate fields �a and �m are obtained from the
Heisenberg equations for the field operators, having taken
expectation values and applied Wick’s theorem:

i �h
d�a

dt
� VN �0��a � �VGA�0� � g�m��

�
a; (2)

i �h
d�m

dt
�
g
2
P �0� � ��m; (3)

�h
dGN�r�
dt

� 2Im�VP �0�G�
A�r� � g�mG�

A�r��; (4)

i �h
dGA�r�
dt

��
�h2r2

2�
GA�r� � 4V�j�aj

2 �GN�0��GA�r�

� �VP �0� � g�m��2GN�r� � ��r��; (5)

with � the reduced mass, N �r� � j�aj
2 � 2GN�r�, and

P �r� � �2
a �GA�r�. This is the complete closed set of

equations to be dynamically solved. The binary collision
physics encapsulated in the HFB equations is extracted by
setting the density-dependent shifts to zero [8].

The local potentials in Eqs. (2)–(5) give rise to an
ultraviolet divergence, which can be properly treated by
renormalization. This must be done in such a way as to
maintain the correct underlying two-body resonance
physics for any momentum cutoff K in the field theory.
One should consider the delta function interactions to be
appropriate zero range limits of nonlocal potentials (e.g.,
square well potentials), and the properties of these po-
tentials can then be chosen such that the microscopic low
energy two-body physics around a Feshbach resonance is
correctly described. This renormalization procedure
amounts to replacing the coupling constants in the
Hamiltonian by parameters which depend on K. The
required parameters can be concisely summarized by
the complete relations V � �U, g � �g0, and � � �0 �
�gg0=2, where U � 4� �h2abg=m, � � �1� �U��1, � �
mK=�2�2 �h2�, and g0 is determined from the field depen-
dence of the binding energy as we now explain.
180401-2
A big advantage for this system is that the rubidium
two-body interactions are extremely well known. Typical
scattering lengths can be calculated to at least the 1%
level [11]. For this experiment, where the fringe fre-
quency is determined by the energy of the highest bound
state, accurate knowledge of the binding energy is crucial.
In Fig. 1 we show the binding energy as a function of
magnetic field using a full coupled channels calculation
[12]. In order to reproduce exactly the result of this
calculation, we would need to go beyond the single reso-
nance formulation we have presented [8]. However, in
spite of the complexity of the real rubidium system, the
field theory with one resonance state allows a remarkably
good approximation to the binding energy over the field
range of interest. This comparison is shown in Fig. 1
and determines the value of g0 used in our following
simulations.

The outcome of the experiment of Donley et al. [3]
closely resembles the seminal experiments on Ramsey
fringes in atomic beam physics [13]. The starting point is
a condensate of 85Rb atoms in the jf;mfi � j2;�2i state,
at a magnetic field where the scattering length is close to
zero. Two magnetic field pulses are applied (see Fig. 2),
each of which brings the condensate close to resonance.
The two pulses are separated by a free evolution interval
tevolve, during which time the magnetic field is increased
to move the system farther away from resonance. After
this pulse sequence, the remaining number of atoms in the
condensate is measured, which is then called the remnant.
Also a burst of noncondensate atoms is observed. The
populations of the remnant and the burst both show
oscillations as a function of tevolve at a frequency that
corresponds to the binding energy of the molecular state
180401-2
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FIG. 2. A typical magnetic field pulse sequence as a function
of time. The interval tevolve is modified in the experiment. The
position of the resonance is indicated by the dashed line.
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FIG. 3. Fraction of the atomic condensate as a function of
time. We identify these atoms as the remnant of Donley et al.
[3]. The calculation is done for the pulse sequence given in
Fig. 2, for a density n � 3:9� 1012 cm�3. The inset shows the
analogous graph for the molecular condensate.
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FIG. 4. Normal field GN�r� as a function of time and distance
for the same calculation illustrated in Fig. 3. We identify these
atoms as the burst atoms of Donley et al. [3]. The spread in r
space is a measure of the energy of these noncondensate atoms.
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at the intermediate field. The sum of the populations of
the remnant and burst do not add up to the initial number,
implying a missing component. The theoretical solutions
which follow in this Letter can be directly compared with
the results presented in the figures of Donley et al. [3].

In spite of the fact that the mean-field equations (2)–(5)
were derived for a homogeneous system, we may apply
our theory to a trapped gas by performing a Gaussian
average over the densities of the system. This is justified
because the atoms will move at most only one-hundredth
of the oscillator ground state size during full evolution
time. For each value of the density, we solve the time-
dependent equations modifying the detuning according
to the time-dependent field given in Fig. 2. In Fig. 3 we
show a time evolution of the atomic condensate, and the
corresponding time evolution of the molecular conden-
sate. At the end of the first pulse about 25% of the
condensate atoms have been converted into other compo-
nents. The growth of population in the molecular con-
densate takes place mostly during the final ramp. It is
notable that the fraction of molecules does not account for
the missing atoms. In fact, the atoms are mainly trans-
ferred to the normal and anomalous densities which are
ascribed to the noncondensate component.

The growth of the noncondensate component can be
seen in Fig. 4. The function GN�r � 0� represents the
density of noncondensate atoms, which can be seen to
oscillate out of phase with the atomic condensate during
tevolve. It is remarkable that in spite of the fact that the
Ramsey fringes occur at the molecular binding energy
with significant visibility, the population of the molecular
condensate remains small. A much larger fraction is
converted into strongly correlated atom pairs, encapsu-
lated by the normal and anomalous densities. In-
terestingly, the anomalous density is the same aspect of
the field theory which accounts for Cooper pairing in a
nonideal Fermi gas and gives rise to superfluidity at
180401-3
temperatures below the critical value. The explanation
for the observed growth of the pairing field rather than
the molecular condensate is due to the close proximity of
the bound state to threshold. The range of the molecular
bound state stretches in this case to very large internu-
clear distances, something which has much more overlap
with the delocalized GA pairing field than with the lo-
calized closed channel state.

In Fig. 5 we show the population of atomic condensate
and noncondensate atoms, obtained at the end of the pulse
sequence, as a function of the evolution time tevolve. The
sum of these two numbers (squares) equals the total
number of initial condensate atoms minus twice the num-
ber of molecular condensate atoms due to particle con-
servation. The frequency of the oscillations agrees with
the binding energy of the renormalized potential, given
180401-3
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FIG. 5. Oscillations between the atomic condensate (solid
line) and the normal field GN�0� (dashed line). These two
numbers add up to the total number of recovered atoms
(squares), which excludes the molecular component. The
calculation is performed for a mean density of hni � 3:9�
1012 cm�3.
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by the open squares in Fig. 1. When we compare these
curves with Fig. 6 of Donley et al. [3], we see that we can
clearly identify the remnant observed in the experiment
as the atomic condensate component of the quantum field
theory. The experimental data closely resemble the solid
curve both in offset and in amplitude. Similarly, the
noncondensate atoms can be identified as the burst atoms.
SinceGN�r� is a correlation function, it is straightforward
to determine the energy of the noncondensed atoms
which are produced. This manifests as the spatial decay
rate of the correlation function in the r direction, which
can be converted into an average energy. The energy
which results is comparable to the experimentally deter-
mined energy range for the burst. The missing atoms are
also elucidated. The weakly bound molecules may decay
to lower vibrational states via a collision with a third
atom, resulting in large kinetic energies for both scatter-
ing partners. Such atoms would not be observed. Finally
we note that a superposition of the molecular and anoma-
lous field is needed to find the variational ground state of
the system [14], with the molecular binding energy as the
eigenvalue.

We have repeated our calculation for a different experi-
mental situation [15] with a factor of 10 larger density,
and a different time dependence of the field. Here the
number of remnant atoms is lower than the burst atoms,
so that the position of the fringes shown in Fig. 5 is
switched and shows indications of damping. We again
get good agreement with the experiment, and the appear-
ance of damping of the Ramsey fringes in the theory is
due to density-dependent inhomogeneous dephasing. This
effect is due to a relatively small mean-field shift in the
oscillation frequency that shows a strong dependence on
density. Finally we note that both theory and experimen-
180401-4
tal data exhibit a notable phase shift between the position
of the fringes of the atomic condensate and the noncon-
densate atoms.

In conclusion, we have used a resonance effective field
theory which includes an accurate description of the two-
body bound state and scattering physics to describe a
recent experiment at JILA. Because of the complexity
of the mean-field physics relevant to Feshbach resonance
scattering, it has not been possible previously to provide
this kind of quantitative comparison. We are able to un-
ambiguously identify the observed remnant and burst.
The pairing field associated with the noncondensate
atoms plays a crucial role in our calculated evolution.
This pairing field is analogous to the formation of
Cooper pairs in a superfluid Fermi gas. The ability to
determine the coupling constants from known two-body
rubidium physics allows us to make these comparisons
with experimental data with no adjustable parameters.
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