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Multicritical Point in a Diluted Bilayer Heisenberg Quantum Antiferromagnet
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The S � 1=2 Heisenberg bilayer antiferromagnet with randomly removed interlayer dimers is studied
using quantum Monte Carlo simulations. A zero-temperature multicritical point �p�; g�� at the classical
percolation density p � p� and interlayer coupling g� � 0:16 is demonstrated. The quantum critical
exponents of the percolating cluster are determined using finite-size scaling. It is argued that the
associated finite-temperature quantum critical regime extends to zero interlayer coupling and could be
relevant for antiferromagnetic cuprates doped with nonmagnetic impurities.
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FIG. 1. The bilayer with intraplane and interplane couplings
J1Si � Sj and J2Si � Sk. Solid circles represent magnetic sites
and a quantum disordered state as a function of the ratio (S � 1=2). Two removed dimers are indicated by open circles.
Randomly diluted quantum spin systems combine as-
pects of the percolation problem [1] with the physics of
thermal and quantum fluctuations. In systems that can be
tuned through a T � 0 phase transition as a function of
some parameter one can hence study divergent quantum
fluctuations coexisting with classical fluctuations due to
percolation. A multicritical point, where the two types of
fluctuations diverge simultaneously, is realized in the
transverse Ising model with dimensionality D > 1 [2,3].
In models with O�N� symmetry and N > 2 such a point
was believed not to exist, because quantum fluctuations
were argued to always destroy the long-range order on
the percolating cluster [3]. Several studies of diluted 2D
Heisenberg antiferromagnets were consistent with this
scenario [4–6]. However, recent quantum Monte Carlo
simulations have shown that long-range order in the 2D
Heisenberg model persists until the percolation point
[7–9] and that the percolating cluster is ordered as well
[8,9]. This implies that the phase transition is a classical
percolation transition. It also suggests that a multicritical
point, at which the percolating cluster is quantum critical,
could be reached by including other interactions. In this
Letter it will be shown that the O�3� multicritical point
can be realized in the Heisenberg bilayer with dimer
dilution, i.e., where adjacent spins on opposite layers are
removed together. This system is illustrated in Fig. 1, and
a schematic T � 0 phase diagram is shown in Fig. 2. In
analogy with quantum critical points in clean 2D
Heisenberg antiferromagnets [10,11], one can expect a
finite-T universal quantum critical scaling regime to ex-
tend well beyond the T � 0 critical coupling g�, possibly
all the way to decoupled layers (g � 0). This quantum
criticality could then be realized in layered antiferromag-
nets doped with nonmagnetic impurities. It may already
have been observed in La2Cu1�x�Zn;Mg�xO4, for which
recent neutron scattering experiments [12] show a corre-
lation length divergence roughly consistent with the dy-
namic exponent z � 1:3 extracted here.

The clean S � 1=2 bilayer Heisenberg model has been
extensively studied in the past [13,14]. It undergoes a
quantum phase transition between an antiferromagnetic
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g � J2=J1 of the interplane and intraplane couplings. The
critical coupling gc � 2:52 and the exponents are consis-
tent with the expected [10] classical 3D Heisenberg uni-
versality class. If the system is diluted by randomly
removing single spins, the quantum phase transition is
destroyed because moments are induced around the
‘‘holes’’ in the gapped phase. These localized moments
order antiferromagnetically for all g [15]. In order to
circumvent this ‘‘order from disorder’’ phenomenon, in-
terplane dimer dilution will be considered here. A dimer
is not associated with moment formation and hence there
is a spin gap for large g at any dilution fraction p. When
g � 0 the system corresponds to two independent site-
diluted Heisenberg layers. In that case, it was recently
shown that the sublattice magnetization on large clusters
at the percolation density scales to a nonzero value in the
limit of infinite cluster size [8,9], implying a classical
percolation transition. In the bilayer the long-range order
on the percolating cluster can then be expected to survive
up to a critical interlayer coupling g� > 0, leading to the
phase diagram shown in Fig. 2.

In order to extract the multicritical coupling g�, quan-
tum Monte Carlo simulations similar to those discussed
in Ref. [9] were carried out at the percolation point (p� �
0:407 253 8 [16]). Two types of boundary conditions
were used. In periodic L� L systems, dimers were re-
moved with probability p� and the largest cluster of con-
nected dimers was studied. These clusters have a varying
number N1 of dimers, with hN1i 
 ALd, where the fractal
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FIG. 3. Finite-size scaling of the single-plane sublattice mag-
netization on L� L clusters at the percolation density. In the
inset, both the single-plane �m1� and full-system (m2) defini-
tions of the sublattice magnetization on L� L lattices at g �
0:10 are shown along with m2 for the fixed-N clusters.

0
0

(g*,p*)

p

g

ordered

FIG. 2. Schematic T � 0 phase diagram for the Heisenberg
bilayer with coupling g and a fraction p of the interplane
dimers removed. Percolation and quantum phase transitions
are indicated by the solid horizontal line and the dashed curve,
respectively. The circle indicates the multicritical point.
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dimension d � 91=48 [1] and A � 0:67. Clusters were
also constructed at fixed size N without boundary im-
posed shape restrictions [9]. In this case the correspond-
ing length scale is R � N1=d. The two types of clusters
will be referred to as L� L and fixed N, respectively. A
length R � 0:81 � Lwill sometimes be used for the L� L
clusters, so that for a given R the average size hN1i � R1=d

is the same as the size of the fixed-N clusters. The
calculations were carried out using the stochastic series
expansion method [17]. Temperatures sufficiently low to
obtain ground state properties were used for L� L clus-
ters with L up to 64 and fixed-N clusters with N up to
1024. The results were averaged over a large number of
dilution realizations, from > 103 for the largest sizes to
> 105 for smaller sizes.

For a cluster with N1 dimers (N2 � 2N1 spins), single-
plane (a � 1) and full-system (a � 2) staggered structure
factors and susceptibilities are defined as

Sa��;�� �
1

Na

XNa
i;j�1

PijhS
z
iS

z
ji; (1)

�a��;�� �
1

Na

XNa
i;j�1

Pij
Z �

0
d�hSzi ���S

z
j�0�i; (2)

where Pij � 1 for sites i; j on the same sublattice and �1
for sites on different sublattices. Squared sublattice mag-
netizations are defined as [18] hm2

ai � h3Sa��;��=Nai,
where h i indicates averaging over dilution realizations.
The two definitions hm2

1i and hm2
2i should extrapolate to

the same infinite-size value, but the finite-size corrections
can be different. In clean systems, it is known that the
leading size correction is 
N�1=2 [19], and this was found
to be the case also for the diluted single layer [9]. In Fig. 3,
hm2

1i on L� L clusters is graphed versus L�d=2 

hN1i

�1=2 for several values of the coupling, along with
the previous g � 0 results. Quadratic fits are also shown.
Interestingly, the subleading corrections become smaller,
i.e., the behavior becomes more linear, as g is increased
from 0. For g � 0:1 the data for L � 20–64 can be fitted
to a purely linear form, which extrapolates to a nonzero
value. In the inset of Fig. 3 it is shown that the definition
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hm2
2i has more curvature but approaches hm2

1i for the
largest cluster sizes. Results for hm2

2i on fixed-N clusters
are also shown to extrapolate to the same infinite-size
value, with an overall smaller size correction. For g � 0:2
the extrapolations give negative values, indicating that
the sublattice magnetization vanishes (the fitted forms
can here not be correct for very large L, as the asymptotic
behavior has to be 1=Ld if hm2

1i � 0). Hence, the critical
coupling 0:1< g� < 0:2.

At (g�; p��, both Sa��;�� and �a��;�� should exhibit
power-law finite-size scaling. In clean systems the quan-
tum critical scaling forms are S
 L1�� and �
 L1z��,
where � � 0:03 is the equal-time spin correlation func-
tion exponent and z � 1 is the dynamic exponent. Since
the size fluctuates in the case of the L� L clusters, the
statistical errors are reduced in the size-normalized quan-
tities hSa=Nai and h�a=Nai, which therefore will be
studied here. If the exponents are defined by

hSa��;��=Nai 
 R S; (3)

h�a��;��=Nai 
 R �; (4)

the dynamic exponent can be obtained from the differ-
ence: z �  � �  S. The best overall scaling behavior is
seen in hS2=N2i for the fixed-N clusters. Based on this
quantity, the multicritical point is estimated to g� �
0:16� 0:01, and the exponent  S � �0:90� 0:01. A
log-log plot with data for both fixed-N and L� L clusters
at g � 0:16 is shown in Fig. 4. The L� L data have larger
corrections to scaling, but for the largest clusters the
behavior is completely consistent with the exponent
extracted from the fixed-N data. The power-law scaling
in h�a=Nai sets in at larger system sizes, and also in this
177201-2
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case the behaviors seen for L� L and fixed-N clusters are
consistent with each other. The fixed-N clusters again
show a wider range of good scaling and give  � � 0:38�
0:03. The dynamic exponent is hence z � 1:28� 0:02,
where correlations between  S and  � have been taken
into account in the error estimate.

According to hyperscaling theory, the temperature de-
pendence of the uniform magnetic susceptibility �u
should be governed by the dynamic exponent [11,20]:

h�ui �
J1
T

*
1

N2

* XN2

i�1

Szi

!
2
++


 TD=z�1: (5)

Consistency with the z extracted above from T � 0
quantities can hence be tested in a nontrivial way.
Finite-temperature calculations were carried out using
sufficiently large L� L clusters to completely eliminate
finite-size effects down to T=J1 � 1=256. Results at g �
0:16 are shown on a log-log plot in Fig. 5. There is indeed
a significant linear low-temperature regime, where the
slope is 0:470� 0:005. Using d � 91=48 for D in Eq. (5)
then gives the dynamic exponent z � 1:29� 0:01, in full
agreement with the T � 0 result.

Another important quantity is the spin stiffness "s. It
can be calculated in the simulations using the winding
number fluctuations [21] in systems with periodic bound-
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FIG. 4. Finite-size scaling of the staggered structure factors
and susceptibilities. The solid lines are fits to results for the
fixed-N clusters; the dashed lines have the same slopes but are
shifted to match the L� L data for large R.

177201-3
ary conditions (i.e., using L� L clusters). Hyperscaling
predicts "s 
 L2�D�z [20,22] at a T � 0 critical point. At
the percolation point one can expect that D should not be
replaced by the fractal dimension d of the percolating
cluster, but by its backbone dimensionality db, which is
significantly smaller (db � 1:643 [23]). This is because
the spin currents wrapping around the periodic clusters,
in terms of which "s is evaluated, flow only through the
backbone. Furthermore, the above scaling form applies to
systems in which the stiffness takes a finite constant
value in the ordered phase. However, at p� in the single
layer (and hence for all g < g�) it scales as h"si 
 L�t=&,
where t is the conductivity exponent of percolation and
& � 4=3 is the percolation correlation length exponent
[9,24]. The ratio t=& � 0:983 according to recent simu-
lations [23]. In order to account for the ‘‘geometric’’
reduction, the following scaling form is tested here:

h"si 
 L2�db�z�t=&: (6)

Using the value extracted for z above, the exponent 2�
db � z� t=& � �1:92. Figure 6 shows data at g � 0:16
along with this power-law scaling. There are clearly
deviations, but it is also apparent that the numerical
results are not yet in the asymptotic scaling regime.
Significant corrections to the scaling law L�t=& were
also seen in the single-layer case [9]. A definite test of
the conjectured form (6) hence requires calculations for
larger system sizes.

To summarize the results, it has been shown that a
multicritical point at the percolation threshold is realized
in the dimer-diluted Heisenberg bilayer at a critical inter-
plane coupling g� � 0:16� 0:01. The dynamic exponent
z was determined using both T � 0 and T > 0 quantities,
yielding z � 1:28� 0:02. Vajk and Greven have recently
studied the same model at T > 0 [25], with results in
good agreement with those presented here.
−6 −5 −4 −3 −2 −1
ln(T/J1)

−4.0

−3.5

−3.0

−2.5

−2.0

ln
(<

χ u>
)

 L=256
 L=64
 L=32
 L=16
 L=8

FIG. 5. Temperature dependence of the susceptibility at g �
0:16. Results for different system sizes are shown along with a
linear fit to the L � 256 data. The small deviations at the lowest
temperatures indicate that g� is marginally below 0:16.
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FIG. 6. Finite-size scaling of the T � 0 spin stiffness at g �
0:16. The line shows the proposed asymptotic behavior.
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In analogy with finite-temperature quantum criticality
in clean 2D antiferromagnets [10,11], there should be a
significant universal quantum critical regime controlled
by the point �p�; g��. A very interesting question is
then whether this universality could be observed even in
a single diluted layer. The correlation length should
diverge as T�1=z in the quantum critical regime
[10,11]. It is intriguing that this form with z � 1:4 has
recently been observed at high temperatures, in simula-
tions as well as in neutron scattering experiments on
La2Cu1�p�Zn;Mg�pO4 [12]. However, since the experi-
mental system at the percolation point corresponds to g <
g� there should, in the absence of 3D effects, be a T ! 0
crossover to a different dynamic exponent characterizing
the line �p � p�; g < g��. Although the perolating cluster
is ordered, the exponential ‘‘renormalized classical’’ be-
havior [10,26] cannot apply here because "s � 0.

The T � 0 dynamic exponent for �p � p�; g < g�� is
governed by the properties of the percolating cluster.
Since it is long-range ordered the structure factor expo-
nent  S � 0 in Eq. (3). In a clean D-dimensional system
with long-range order the staggered susceptibility di-
verges as L2D [27], and if this holds also at the percolation
point it would imply  � � d in Eq. (4) and hence z�g <
g�� � d � 91=48. This is in contrast to the transverse
Ising model, where there is activated scaling; i.e., z � 1
at the percolation transition [3]. The bilayer simulations
are consistent with z�g & 0:1� � d. Closer to g� crossover
effects make it hard to verify this asymptotic behavior.

It should be pointed out that the bilayer coupling used
here to realize a multicritical point �p�; g�� is only one
way to achieve this universality class. In Zn and Mg
doped cuprates there may be interactions driving the
system from g � 0 closer to such a point in an extended
parameter space. The fact that the sublattice magnetiza-
tion measured experimentally [12] falls significantly be-
low the calculated curve [9] as p! p� indicates that such
couplings indeed are present.
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