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We study the quantum charge noise and measurement properties of the double Cooper-pair resonance
point in a superconducting single-electron transistor (SSET) coupled to a Josephson charge qubit. Using
a density-matrix approach for the coupled system, we obtain a full description of the measurement
backaction; for weak coupling, this is used to extract the quantum charge noise. Unlike the case of a
nonsuperconducting SET, the backaction here can induce population inversion in the qubit. We find that
the Cooper-pair resonance process allows for a much better measurement than a similar nonsupercon-
ducting SET, and can approach the quantum limit of efficiency.
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Among the many open issues related to solid state
quantum computation, the question of how best to mea-
sure a solid state qubit remains a particularly interesting
one. In the case where the qubit is a Cooper-pair box (i.e.,
a Josephson-junction single charge box), the standard
choice for a readout device is the single-electron transis-
tor (SET) [1-6]. An alternate and potentially more
powerful approach is to use a superconducting single-
electron transistor (SSET) biased at a point where the
cyclic resonant tunneling of Cooper pairs dominates
transport [7—12]. Such processes, known as Josephson
quasiparticle (JQP) resonances, would appear to be an
attractive choice for use in a measurement as their reso-
nance structure implies an extremely high sensitivity.
However, precisely because of their large gain, these
processes may be expected to strongly alter the state of
the qubit in a measurement. To assess the balance between
these two opposing tendencies, a close examination of the
physics of JQP tunneling is required.

In this paper, we focus on a double JQP process (DJQP)
(see Fig. 1), which occurs at a lower SSET source-drain
voltage than single JQP processes, and which has been
used in a recent experiment [13]. We assess the potential
of DJQP to act as a one-shot measurement of the state of a
Cooper-pair box qubit. This involves characterizing both
Tmeas> the time needed to discriminate the two qubit states
in the measurement, and the backaction of the measure-
ment on the qubit, which is described by a mixing rate
I'mix and a dephasing rate 1/7,. These quantities are
intimately related to the noise properties of the SSET,
which are of interest in themselves, given the novel nature
of the DJQP process. T, 1S determined by the shot noise
of the process, while I'y;; and 7, are related to the charge
noise on the SSET island. While the shot noise of a single
JQP process has been analyzed recently [14], the quantum
charge noise has not been addressed.

To describe the measurement process in our system, we
employ a density-matrix description of the fully coupled
SSET plus qubit system; this is similar to the approach
taken by Makhlin et al. [4] for a SET, but extended to deal
with Josephson tunneling. This approach is not limited by
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a requirement of weak coupling, as are standard ap-
proaches which perturbatively link I',;, to the transistor
charge noise [5,6]; nonetheless, in the limit of weak
coupling it can be used to calculate the quantum charge
noise of the SSET. We find that the quantum (i.e., asym-
metric in frequency) nature of the noise is particularly
pronounced for the DJQP feature, leading to regimes
where the SSET can strongly relax the qubit. Moreover,
due to the resonant nature of Cooper-pair tunneling, there
exist regimes where the SSET can cause a pronounced
population inversion in the Cooper-pair box. For typical
device parameters, we find that a far better single-shot
measurement is possible using the DJQP process than
with a comparable SET. Significantly, one can also ap-
proach the quantum limit of measurement efficiency
[3,4], where 7,/Tpes 11, in a regime which is both
theoretically tractable and experimentally relevant.
Model—The Hamiltonian of the coupled qubit plus
SSET system is written as H = H ¢+ 5—[Q + H i
The qubit itself (or “box’’), described by fJ"[Q, consists
of a superconducting metal island in the Coulomb block-
ade regime where only two charge states are relevant.
These can be regarded as the o, eigenstates of a fictitious
spin 1/2. The island is attached via a tunnel junction to a
bulk superconducting electrode, leading to the form
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FIG. 1. Schematic showing the four steps of the double
Josephson quasiparticle process which can occur in a super-
conducting single-electron transistor. Circles represent the cen-
tral island of the SSET, while the rectangles are the electrodes.
Numbers indicate the charge of the SSET island.
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j-[Q = —%{[4ECQ(1 - NQ)]G-Z + E/Qa-x}’ (1

where Ec is the charging energy of the box, Ej is the
Josephson coupling energy of the box, and N, is the
dimensionless gate voltage applied to the box. The SSET
consists of a superconducting, Coulomb-blockaded island
which is attached via tunnel junctions to two supercon-
ducting electrodes (Fig. 1). The SSET Hamiltonian
H,=Hg+ He+ Hy + Hy has a term Hy describing
the kinetic energy of source, drain, and central island
electrons, a term Hy which describes the work done by the
voltage sources, and a tunneling term Hy. The charging
term is Ho = Ecg(ng — N'g)?, where Eqg is the SSET
charging energy, ng is the number of electrons on the
central island, and /N g is the dimensionless gate voltage
applied to the island. Finally, the qubit is capacitively
coupled to the SSET: Hj, = 2ECQg—§0'ZnS = E, 0,15
Here C. is the cross capacitance between the box and
the central island of the SSET, and Cy is the total capaci-
tance of the SSET island. Note that we neglect the cou-
pling of the qubit to its environment, as we are interested
here in the intrinsic effect of the SSET on the qubit
[15]. We also assume a SSET with identical tunnel junc-
tions, whose dimensionless conductance g satisfies
g/Q2m < 1.

The DJQP process occurs when the SSET gate voltage
N and drain-source voltage 2Vpg are such that two
Cooper-pair tunneling transitions (one in each junction)
are resonant. We label these transitions as n; = 0 — 2
(left junction) and ng =1 — —1 (right junction) (see
Fig. 1). Resonance thus requires eVypg = Eqg and N g =
1/2. In addition, Ec-g/Ag (wWhere Ag is the superconduct-
ing gap of the SSET) must be chosen so that the quasi-
particle transitions linking the two Cooper-pair
resonances are energetically allowed (i.e., ng =2 —1
and ng = —1 — 0), whereas transitions which end the
cycle (i.e., ng=0— 1) are not. We take E g = Ag to
satisfy these conditions; this corresponds to the experi-
ment of Ref. [13]. The two quasiparticle transitions which
occur in the DJQP are characterized by a rate I', which is
given by the usual expression for quasiparticle tunneling
between two superconductors [16]. The effective Cooper-
pair tunneling rate y; emerging from our description [i.e.,
Eq. (3) below] is given by [8]

E%,T

7O e+ e

2

Here 0 is the energy difference between the two charge
states involved in tunneling, E g is the Josephson energy
of the SSET, and we set i = 1.

Calculation approach.—We consider the reduced den-
sity matrix p of the qubit plus SSET system obtained by
tracing out the SSET fermionic degrees of freedom. The
evolution of p is calculated perturbatively in the tunnel-
ing Hamiltonian Hy, keeping only the lowest order
terms; this corresponds to the neglect of cotunneling
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processes, which is valid for small g and near the DJQP
resonance. Using an interaction representation where only
Hy (and not H;,,,) is viewed as a perturbation, the equation
of motion of p takes the standard form:

o= [ a3 0.1, o) © pr1D,

3)

The angular brackets denote the trace over SSET fermion
degrees of freedom; as we work at zero temperature, p is
the density matrix corresponding to the ground state of
these degrees of freedom in the absence of tunneling.

To make further progress, we treat the Josephson cou-
pling emerging from Eq. (3) as energy independent and
given by the Ambegaokar-Baratoff value E;¢ = gAg/8.
We also use the smallness of g to neglect logarithmic
renormalization terms, as was done in Ref. [4]. One can
then solve for the time-independent solution of Eq. (3),
which describes the state achieved by the system after all
mixing and dephasing of the qubit by the SSET has
occurred. To describe the dynamics of mixing (i.e., the
relaxation of the qubit state populations to their station-
ary value), we also calculate the corresponding eigen-
mode of Eq. (3). A Markov approximation is made which
involves replacing p(#') by p() on the right-hand side of
Eq. (3). This approximation is justified as long as the time
dependence of p in the mixing mode is weak compared to
typical frequencies appearing in the correlators of Eq. (3),
requiring here that I' ;, < E¢g and E;3 << Ecg [17].

Backaction—We focus here primarily on the mixing
effect of the measurement backaction; dephasing will be
discussed more extensively in Ref. [17]. The mixing rate
Fmix = T'rep + Dexe 1s set by the rates at which the mea-
surement relaxes and excites the qubit. Let {) denote the
N o-dependent energy difference between the two qubit
states. For weak coupling (E;,; < (1), Fermi’s golden rule
relates I',,; and T',,. to the quantum charge noise of the
SSET island Sy(w) = [dte™ngs(t)ng(0)):

E 2
I‘rel/exc = E]Zﬂ[(%) SQ(iQ). 4)

In our approach, these rates may be directly obtained by
using the stationary solution (which gives the postmixing
occupancies of the box eigenstates) and the mixing ei-
genvalue of Eq. (3). In the limit of weak coupling, one can
then use Eq. (4) to extract S,(£2). Our method for calcu-
lating the quantum noise, which uses the qubit as a
spectrum analyzer, is physically intuitive and no more
difficult to implement than standard approaches [6]; in
addition, we are able to calculate I',,; and I',,. when the
coupling is not weak, and Eq. (4) fails.

Figure 2 displays the quantum charge noise obtained at
zero temperature, using SSET parameters which corre-
spond to Ref. [13]. The solid curve in Fig. 2 is for the
center of the DJQP resonance—N'g = 1/2, eVpg = Ecs.
Note the sudden asymmetry that develops between
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FIG. 2. Quantum charge noise associated with the DJQP
process. The solid curve corresponds to Ng, Vpg tuned to
the center of the DJQP resonance; the dashed curve corre-
sponds to moving eV g away from resonance by +1"/4. We take
g =05and Ag = E-g = 0.25 meV in the SSET, corresponding
to the device of Ref. [13]; this gives E;g/(hI") = 0.04. Inset:
average qubit charge after mixing has occurred for weak
coupling (E;,/E;p = 0.01), as a function of qubit gate voltage
Ny; see text for details. We take Ecp =77 ueV and E;y =
27 peV. The frequency range probed by tuning N’y matches
the range of the main plot; the sharp steps in the average charge
occur at (N ) = Ecg.

absorption [i.e., So(+|wl)] and emission [i.e., So(—|w])]
when |w| increases beyond Eg. These jumps correspond
to the opening and closing of transport channels in the
SSET, and their sharpness is a result of the singularity in
the quasiparticle density of states. For example, as w rises
past Ecg, transitions which are normally forbidden in the
DIJQP cycle (i.e., ng = 0 — 1) suddenly become energeti-
cally allowed if they absorb energy from the qubit, caus-
ing a sudden increase in Sy(w).

The effect of the SSET quantum charge noise on the
qubit is shown in the inset of Fig. 2, where the average
qubit charge (Ng) = 1 + (o) for t > 7, is shown as a
function of N j,. Changing N, tunes the qubit splitting
frequency (2, allowing one to probe the frequency depen-
dence of the noise. The solid black curve corresponds to
being at the center of the DJQP feature, and the grey
curve corresponds to the unperturbed qubit ground state.
The features in the quantum noise manifest themselves in
(Npg), a quantity which is accessible in experiment.

Even more interesting is the situation when one tunes
N or Vpg slightly off the DJQP resonance center.
Unlike the case of a SET, where noise asymmetries are
weak for |w| < Eqg [6], there are strong features here
that result from the resonant nature of Cooper-pair tun-
neling. By treating the mixing terms in Eq. (3) perturba-
tively, analytic expressions can be obtained for the
quantum noise in this regime when E;¢<I' [in
Ref. [13], E;5/(hT") = 0.04]. If one moves away from the
DIQP center by tuning only Vpg (e, Ng=1/2,
eVDS = ECS + (Sv/2), we find (|a)| < Ecs)

[v,(6y + w)/y,;(6y — )]

47,3y + @)7,(6y — )] + @® O

SQ(w) = Yj(av)
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In the limit where w < I'/2, Eq. (5) simply corresponds
to classical telegraph noise (the SSET spends only appre-
ciable time in the states ng = 0 and ng = 1). However, for
finite 6 and w, Eq. (5) indicates that the noise develops a
pronounced asymmetry, even though |w| < E¢. In par-
ticular, if 8, > 0, one has Sy(—|w|) > Sy(+|wl), imply-
ing that emission by the SSET exceeds absorption. This
behavior is shown by the dashed curves in Fig. 2, which
correspond to Ng = 1/2, 8§y, = +I'/4. This effect is a
direct consequence of the resonant nature of Cooper-pair
tunneling—by emitting energy, both Cooper-pair tunnel-
ing processes in the DJQP cycle become more resonant,
while absorbing energy pushes them even farther from
resonance. The result is a population inversion in the qubit
at zero temperature, which in turn leads to a striking,
nonmonotonic dependence of qubit charge on N
(dashed curve in the inset of Fig. 2) [15]. Note that if
one moves away from the center of the DJQP resonance
by changing only the Ny, no asymmetry in the noise
results, as now emission (or absorption) moves one of the
Cooper-pair transitions in the DJQP process farther zo-
wards resonance, while it moves the other transition
farther away from resonance. Letting 6, = 0 and 6 5 =
4E (N ¢ — 1/2), we have for E; <T:

w 2
1+ (ﬁf,%s/)z Y/(6n — @)y, 0n + @)

[4y;(6n + @)y,(6n — w)] + w?
(6)

Measurement rate—To determine the measurement
time 7., We extend our density-matrix description to
also include m, the number of electrons that have tunneled
through the left SSET junction [4,14]. We are thus able to
calculate the distribution of tunneled electrons P(m, t|i),
where i =1, | denotes the initial state of the qubit. 7, 1S
defined as the minimum time needed before the two
distributions P(m, t| 1) and P(m, t| |) are statistically dis-

tinguishable [4]:
L —1 )2. )

1
Tmeas <1/2 NI

Here I; and | are the average SSET currents associated
with the two qubit states, and f; and f) are the associated
Fano factors which govern the zero-frequency shot noise
in the current. In the absence of the qubit, the density-
matrix equations for the SSET yield the following for the
single Fano factor f:

SQ(CU) =v,(6x)

a0 1 B3/27 - 87
ﬂwipiﬁﬁuﬁ+%m4 ®

where we take eVpg = Ecg, 6 = S = 4Eqcg(N g —
1/2). Equation (8) indicates that the effective charge of
the carriers in the DJQP process is 3¢/2 in the limit where
I' > Ejs. In this limit, Cooper-pair tunneling is the rate-
limiting step in the cycle; electrons effectively tunnel in
clumps of e or 2e, leading to an average charge of 3e/2.
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FIG. 3. 1/Tmeas> I'rer» and 'y Vs qubit gate voltage N, for a

strongly coupled system, where E;,/E;g = 0.3 (i.e., Cc/Cy =
0.05). A good measurement is possible for a wide range of gate
voltages. Inset: Heisenberg efficiency y = 7,/7pe, at weak
coupling, as a function of E;g/T".

We consider 7., in the limit of weak coupling (E;,; <
1) and weak mixing (E;p < ). Taking 6, = 0 and
8N =T'/2 for near optimal gain, and using Egs. (6)—
(8), we find that the intrinsic signal-to-noise ratio
(Tmeasmix) ~'/% of the measurement, in the relevant re-
gime E;¢ <T, is given by

4 Q
(S/N)psop = \/;| cotd| T2 ©)

Here cotf = 4Ec,(1 — N )/E,, and we take y,(0) <
) < Ecg. If a SET in the sequential-tunneling regime is
used for the qubit measurement, it was found in Refs. [3,4]
that the optimal S/N is given by (Q < E)

2 2
> + ;‘;2, (10)

(S/N)ser = Al cotf] < @
€Vps
where A is of order unity. As the quasiparticle transition
rate I' ~ £ eV, we see that the S/N achieved using
DJQP is parametrically larger (in 277/g > 1) than that
obtained for the SET. This enhancement results largely
from the narrow width of the DJQP feature—the energy
scale over which the current changes (and thus the gain)
is set by I' rather than Vjg. The gain and S/N ratio of the
SET could be improved by working in the cotunneling
regime; however, this would result in a much larger 7q,
(Tmeas & &%), making one more susceptible to unwanted
environmental effects. In contrast, the DJQP feature has
both a large gain and a short 7., (i.€., Tmeas % 1/8).
Shown in Fig. 3 as a function of Ny are Tpe,, I'rer, and
Iy for a strongly coupled device (Co/Cs = 0.05), with
all other parameters as listed in the caption of Fig. 2. We
have taken &y =0 and 8N =1TI'/2 for optimal gain.
Figure 3 confirms that an excellent measurement is indeed
possible, with (S/N)* > 100.

We have also studied the efficiency y = 7,/7ypeas Of
measurement using DJQP for a weak coupling (E;, <
Ej, ') and Q < Ecg, where 7, is the measurement-
induced dephasing time [17]. Unlike an SET in the se-
quential-tunneling regime, where y o g2 is always much
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less than the quantum limit y = 1 [3,4], here y is con-
trolled by the ratio E;¢/I". As shown in the inset of Fig. 3,
by tuning this ratio, y can be made to approach the
quantum limit. Here, for each value of E;¢/I", we have
set Vpg and N g to optimize the gain. Measurement using
DJQP is able to reach a high efficiency when E ;g =~ I" both
because of the symmetry of the process and because of
the coherent nature of Josephson tunneling; the large gain
of the process is also important [17]. Clearly, the DJQP
process allows for a far superior measurement of a
Cooper-pair box qubit than a SET.
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