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Quantum Phase Transitions to Charge-Ordered and Wigner-Crystal States under
the Interplay of Lattice Commensurability and Long-Range Coulomb Interactions
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The relationship among the Wigner crystal, charge ordering, and the Mott insulator is studied by the
path-integral renormalization group method in two-dimensional systems with long-range Coulomb
interaction. In contrast to the insensitivity of the Hartree-Fock results, the stability of the solid
drastically decreases with the decrease in the lattice commensurability. The transition to liquid occurs
at the electron gas parameter rs � 2 for the filling n � 1=2, showing a large reduction from rs � 35 in
the continuum limit. A correct account of quantum fluctuations is crucial to understanding the charge-
order stability generally observed only at simple fractional fillings and the nature of quantum liquids
away from them.
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stabilizing the solid only at simple commensurate fillings
works very efficiently. The Mott insulator can be viewed

case. We impose the periodic boundary condition in our
numerical studies. The Coulomb interactions between
Coulomb interaction drives various types of electron
crystallization ranging from Wigner lattice, charge-order
including stripes to Mott insulator. The Wigner transition
in the continuum space was studied on two-dimensional
(2D) electron systems by quantum Monte Carlo calcula-
tions and the transition point was estimated to be rs � 35
at zero temperature [1,2], where rs � r0=aB with the
Wigner Seitz radius r0 � 1=

���������
�ne

p
, the Bohr radius aB �

4�	 �h2=m�e2, and the electron density ne. This transition
in the quantum region was experimentally realized in
GaAs heterostructure at rs � 35 in good agreement with
the theoretical prediction [3].

The most dramatic effect of atomic periodic potential
in crystal not contained in the electron gas is apparently
the band formation in electronic spectra due to Bloch
theorem. In this Letter, we stress another crucial concept,
lattice commensurability, generates another dramatic ef-
fect of the periodic potential when the Coulomb interac-
tion is present. In correlated electron systems, as in
transition metal compounds [4,5] and organic systems
[6], charge-ordering phenomena including stripe type
are common when the electron filling n satisfies simple
fractional number such as 1=2 and 1=3. These phenomena
have attracted much interest in relation to the mecha-
nisms of high-Tc superconductivity in the cuprates and
colossal magnetoresistance in the manganites. However,
in those systems, as we discuss later, the effective value of
rs is usually estimated to be rather small in the range rs <
10, though we have some uncertainty for the estimate of
the effective mass m� and the dielectric constant 	. At
such low values of rs, we expect the quantum melting of
electrons in terms of the above electron gas picture.When
n deviates from a simple fractional number, such charge
orders indeed usually melt to metals or the charge perio-
dicity is pinned at the simple fillings with added carriers
localized by disorder. It implies that a mechanism of
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as the extreme limit of strong commensurability, which
can be stabilized even at lower effective rs with a com-
mon incompressible nature.

In this Letter, we show that the mechanism for such
common stabilization of the solid only at simple frac-
tional fillings is puzzling in the Hartree-Fock (HF) cal-
culations, whereas it can indeed be understood only when
the quantum many-body fluctuation effects are seriously
considered.We also show that a simple metal a la the band
theory actually has a complex hierarchy structure of
charge-order insulators and their proximities.

We employ a Hamiltonian given as

ĤH � ĤH0 � ĤHI; ĤH0 � �
X

hi;ji;�

tij	c
y
i�cj� � H:c:�;

ĤHI �U
X

i

ni"ni# �
1

2

X

i�j

Vijninj; (1)

where the notations follow the standard one in the
Hubbard-type models. We take the long-ranged Cou-
lomb term as Vij � V=jri � rjj, where we ignore possible
screening arising from electrons in other bands.
The jellium model is employed by assuming a uniform
positive-charge background while the effect of ionic pe-
riodic potential is represented by the lattice with single-
band electrons located near the Fermi level. The on site
interaction U measured from V may depend on the de-
tailed structure of atomic orbitals. Here we take U=t � 4
throughout this paper for simplicity. This ratio may be
more or less the lower bound for the real situations. In any
case, our results in this Letter for n � 1=2 do not sensi-
tively depend on this ratio. Effects of U become relevant
for the Mott insulator (n � 1), which are discussed in
more detail in a separate paper [7]. Here, we study spin-
less fermion models in addition to spin-1=2 electrons.
This corresponds to the fully polarized ferromagnetic
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y

FIG. 1. Lattice structure with anisotropic transfers tx and ty.
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FIG. 2. Hartree-Fock result for dH=drs vs rs for 32 spinless
electrons on 32 by 32 lattices.
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FIG. 3. Hartree-Fock result for two-body correlation func-
tion for 32 spinless electrons on 32 by 32 lattice. The periodic
structure for rs � 4:0 indicates long-range order with the
triangular lattice structure while it is absent at rs � 3:0.
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images across the periodic boundaries are taken by the
Ewald summation.

Since our purpose in this Letter is to understand a
generic and universal feature of the interplay between
quantum fluctuations and commensurability, we restrict
our study to the 2D rectangular lattice with the anisotropy
of lattice constants ax and ay as well as tx and ty taken as
simple as possible to avoid a possible complexity which
may intervene the clarification of the essence. The trans-
fer is limited to the nearest-neighbor pairs in x and y
directions denoted by tx and ty as in Fig. 1. The anisotropy
d � ay=ax is chosen to make the charge ordering with a
right triangular lattice structure possible at the given
filling. By this choice, the commensurability effect can
be solely extracted and can be compared on the same
grounds with the continuum limit, because the same
structure is found in the continuum limit. To see a system-
atic dependence on rs, we control tx and ty by a single
parameter of the effective mass m� as tz � �h2=2m�a2z
with z � x or y, which reproduces the dispersion in the
continuum limit and enables the comparison of low-
filling results with the continuum limit. The effects of
specific anisotropies do not change our main results on
the commensurability effects.

The above Hamiltonian may be rewritten as ĤRHR �
ĤH0 � ĤHI, ĤH0 ���d=	�nr2s��

P
hi;jix;�	c

y
i�cj��H:c:��

�1=	�dnr2s��
P
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1
d�N̂Ne,

ĤHI�U
P
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rs

P
i;j�	ninj�=	jrj� rij�� in

the energy unit of Rydbergs, where N̂Ne is the total
electron-number operator. By the continuum limit of
vanishing ax and ay and n! 0, with rs fixed, the
above Hamiltonian is reduced to that of conventional
electron gas.

We first discuss the HF calculation for spinless fermi-
ons. For n < 1=2, the first-order transitions are clearly
visible from the jump of hdĤH=drsi, e.g., in Fig. 2 at rsc �
3:45� 0:05 for n � 1=32 on the 32� 32 lattice. The jump
indicates the level crossing as a function of rs. The right
ordinate is the scale for the second Hamiltonian ĤHR
defined by � � @	r2sĤHR�=@rs � 	d=�n�@ĤH=@rs. The
crystallization is indeed identified in the two-body cor-
relation defined by C	r i� �

1
N

P
r j
hnr j�r i

nr j
i in Fig. 3,

For fixed electron-number Ne, the transition point is
first extrapolated to the continuum limit n! 0 and then
176803-2
to the thermodynamic limit Ne ! 1 as in Fig. 4. The
small size dependence suggests that Ne � 8 gives already
a good estimate of the thermodynamic limit. At n � 1=2,
the transition is of continuous type with the absence of a
jump in hdH=drsi while the Fourier transform of two-
body charge correlation diverges at the peak as a Bragg
peak with increasing system size for rs � rsc. The tran-
sition is at rsc � 0:9� 0:1 after finite-size scaling.

Spin-1=2 electrons are also analyzed at n � 1=4 and
1=2. The transitions appear to be of first order at rsc �
2:05� 0:05 and continuous at rsc � 1:35� 0:15, respec-
tively. The orders of transitions are the same as the spin-
less case and the difference of rsc between these two cases
shrinks with decreasing filling. The HF approximation
predicts the crystallization of 2D electrons ranging from
rsc � 1 at n � 1=2 to rsc � 3:69 in the continuum limit.
The filling dependence is rather small.

To understand how quantum and many-body fluctua-
tions modify the HF results, we have calculated the
176803-2
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FIG. 6. PIRG result for dH=drs vs rs for eight spinless
electrons on 12 by 12 lattices.
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FIG. 4. The Hartree-Fock results for liquid-solid transition
points of spinless electrons as a function of the inverse of the
particle number Ne in the limit n! 0.
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ground state of this system by applying the path-integral
renormalization group (PIRG) method [8]. By following
the path-integral formalism, the long-ranged Coulomb
term is rewritten by using the Stratonovich-Hubbard
transformation [9]. We took the number of nonorthogonal
Slater determinant basis, L, up to 256 and extrapolated as
a function of the energy variance, where the zero variance
limit gives an exact ground-state estimate in the full
Hilbert space. Below, we show results when the extrapo-
lation linearly converges well. Figure 5 shows typical
examples of the extrapolation for hdH=drsi. We note
that the HF result is nothing but that at L � 1 in PIRG
and the quantum many-body fluctuations are taken into
account systematically with increasing L. Typically, the
energy variance at the largest L is 1 order of magnitude
smaller than that at L � 1.

We took lattice sizes up to 144 sites (12� 12 lattice)
with electrons up to 72 at quarter filling n � 1=2 for both
spinless and spin-1=2 electron systems. At n � 1=8 and
1=18, we show only on the spinless system for 64 and 144
sites, respectively, with eight electrons. We restricted to
the spinless case for these low fillings since the difference
from that with spins is estimated to be small. This is
inferred from the comparisons of the PIRG with the HF
results at n � 1=2 together with the HF results at lower
filling with spins. In fact, the spin effects appear mainly
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FIG. 5. The extrapolation of hdH=drsi with the energy vari-
ance at rs � 26 (open circles) and 30 (closed circles) for the
case of Fig. 6.
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through the exchange process. The exchange is scaled by
t2, where t is the effective transfer between neighboring
electrons. At lowering fillings, it forms lower-energy
hierarchy than that of the charge order, V. Though spin
is important in determining the magnetic order, this small
energy scale hardly changes the solid-liquid transition for
n � 1=2. The system-size dependence of the transition
appears to be small at the low fillings because the tran-
sition becomes first order. Therefore, though our systems
at the low fillings are rather small, the results are ex-
pected to be close to the thermodynamic ones.

We first show spinless cases. Figure 6 shows a typical
example showing the first-order transition in the PIRG
calculation at n � 1=18 for eight fermions on a 12 by 12
lattice. The jump is similar to the HF results with a clear
change of the correlation as in Fig. 7. However, the
transition takes place at substantially higher rs than the
HF result. The transition at n � 1=8 is also first order
while that seems to be of continuous type again at n �
1=2. The transition is estimated to be at rsc �
1:75� 0:25, 13:5� 0:5, and 24:5� 0:5 for n � 1=2,
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FIG. 7. PIRG result for two-body correlation function for
eight spinless electrons on 12 by 12 lattice.
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FIG. 8 (color). Solid-liquid phase boundary in plane of the
filling n � 1=l and rs. The square indicates the Wigner tran-
sition point [1]. The PIRG results (filled and open circles for
spinless and spin-1=2 fermions, respectively) are compared
with the Hartree-Fock results (crosses for spinless and triangles
for spin-1=2 electrons). The solid curves are guides for the eye
for the envelope of the boundary at n � 1=l. The dotted curves
show contour lines for the ratio of 	=m� to the bare value being
at 1, 2, 3, 4, and 5 from up to down. The inset enlarges the
small rs region.
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1=8, and 1=18, respectively.We have also studied spin-1=2
electrons at n � 1=2 and obtained a continuous transition
at rsc � 2:0� 1:0, which is comparable to the spin-
less case.

In Fig. 8, the solid-liquid phase boundary, rsc, is shown
and the HF and PIRG results are compared for n � 1=l
with integer l. From the plot, rsc appears to form a smooth
envelope for n � 1=l. At simple fractional filling such as
n � 1=2, rsc by the HF approximation is relatively good.
However, it deviates from the PIRG results rapidly with
increasing l. The ratio of these two estimates increases
from �1:5–2 at n � 1=2 to �10 in the continuum limit.
In terms of the electron density, this difference means
from 3– 4 to 100, since the density is scaled by r2s . From
the PIRG results, we can understand why charge orders
are commonly observed in organic and transition metal
compounds at simple fractional fillings as 1=3, while it is
pinned or melts away from such fillings because rsc in-
creases dramatically with an increasing denominator of
the irreducible fraction while the parameters of many
compounds may lie in this range of variations. For ex-
ample, when we assume a layered perovskite structure
with the lattice constant a � 4 �A and the effective ratio
	=m� being twice the bare value, n � 1=2, 1=3, and 2=3
are within the solid region while n � 1=4, 3=4, and
fractions with higher denominators are in the liquid re-
gion as in Fig. 8. We note that the filling control at fixed
lattice constants follows a contour line of 	=m� in Fig. 8.
We also see that the HF approximation qualitatively fails
in accounting this general experimental trend.

With increasing m�=	, the charge-order states may
form ‘‘devil’s staircase’’ when rs approaches 35, since
fillings at irreducible fractions with the same denomina-
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tor may have similar rsc. Competitions with hierarchical
structure formation by various levels of fractional fillings
are also expected. Even metallic states near the charge
order may contain charge-order proximities when the
static solid could be stabilized on the mean-field level.
In this context, for n � 1=l with decreasing integer l, the
charge-order transition becomes a more continuous type,
which must accompany larger quantum fluctuations. This
may be particularly conspicuous near the simple com-
mensurate order such as the Mott insulator [7]. Re-
analyses of mechanisms of high-Tc superconductivity in
the cuprates and the colossal magnetoresistance in the
manganites from the present insight would be a future
intriguing issue, since they appear in the proximity of
insulator stabilized by the simple commensurability.

In summary, we have studied the liquid-solid transition
of two-dimensional electrons with long-range Coulomb
interaction. We have shown how the Mott insulator at n �
1, charge orders at 0< n< 1, and the Wigner lattice at
n! 0 are connected. The charge-order transition does
not sensitively depend on the spin degrees of freedom for
n < 1=2. Although the HF transition points are rather
insensitive to the electron filling and lattice commensu-
rability, the PIRG result with quantum fluctuations taken
in a correct way shows a rapid increase of rs for the
transition when the commensurability becomes weak.
The present PIRG results explain why charge orders or
stripes are commonly observed only at simple fractional
fillings such as 1=2 and 1=3 but are not away from them.
We stress that such interplay between quantum fluctua-
tions and the commensurability may play a crucial role
also in metals (quantum liquids). It would be interesting
if the interplay can be experimentally studied by micro-
fabrication of periodic potential to 2D electron systems.
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