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Aharonov-Bohm Magnetization of Mesoscopic Rings Caused by Inelastic Relaxation
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The magnetization of a system of many mesoscopic rings under nonequilibrium conditions is
considered. The corresponding disorder-averaged current in a ring I��� is shown to be a sum of the
‘‘thermodynamic’’ and ‘‘kinetic’’ contributions both resulting from the electron-electron interaction.
The thermodynamic part can be expressed through the diagonal matrix elements J�� of the current
operator in the basis of exact many-body eigenstates and is a generalization of the equilibrium persistent
current. The novel kinetic part is present only out of equilibrium and is governed by the off-diagonal
matrix elements J��. It has drastically different temperature and magnetic field behavior.
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FIG. 1 (color online). (a) The experimental geometry.

both the current and the magnetic flux change sign under
such a reflection, so that the symmetry relationship

(b) Nonequilibrium energy distribution function with two
steps. (c) DOS for a Kondo system [4].
Recently there has been considerable interest in meso-
scopic phenomena under nonequilibrium conditions. The
relaxation of electron energy distribution function due to
inelastic processes of electron interaction has been mea-
sured in mesoscopic wires [1]. The Kondo effect in quan-
tum dots with finite bias has been intensively discussed
theoretically [2,3] and observed experimentally [4].

The nonequilibrium effects are also important for the
magnetic response of a system of mesoscopic rings [5,6].
In equilibrium, a weak constant magnetic field gives rise
[7] to a magnetization of a system of many normal-metal
mesoscopic rings that corresponds to the average persis-
tent current per ring
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where � is the magnetic flux through a ring, E��� is the
total energy of interacting electrons in a ring averaged
over the disorder and the thermal ensembles, and �0 �
hc=e is the flux quantum.

The remarkable feature of the flux dependence in
Eq. (1) is its periodicity and odd character. The latter is
due to the dissipationless nature of the equilibrium per-
sistent current. Indeed, in equilibrium both directions of
time are equivalent, so that time-reversal symmetry re-
quires I�PC���� � �I�PC�����. The periodic and odd in�
magnetization of the form Eq. (1) has been indeed ob-
served [8] in a sample containing 107 mesoscopic copper
rings.

However, the disorder-averaged current in a ring must
respect another symmetry related with the space homo-
geneity of the disorder-averaged system. This is space
reflection about the ring diameter. It is easy to see that
0031-9007=02=89(17)=176601(4)$20.00 
I��� � �I���� should hold even in the case where equi-
librium and time-reversal symmetry is not assumed. We
thus arrive at the statement that the odd character of I���
cannot be used as evidence that the disorder-averaged
current observed in [8] is an equilibrium persistent cur-
rent. The same is true for the �0=2 periodicity.

It has been shown by straightforward calculations [5,6]
that a nonequilibrium dc current I�dc���� of the same form
as Eq. (1) indeed arises when the ring is driven out of
equilibrium by an external ac electric field.

A nonequilibrium current is sustainable for a reason-
ably long time only if there is an external force acting on
the electron system. This force can produce a nonequili-
brium dc current either by a direct action on electrons in
the ring or indirectly. The case of the external ac electric
noise in Ref. [6] can be considered as a representative
example of the direct effect.

In this Letter we consider another, indirect mechanism
of a nonequilibrium current which is related with the
relaxation of the given nonequilibrium electron energy
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distribution created by an external force. The similar
relaxation-induced mesoscopic photovoltaic effect has
been considered in Ref. [9]. However, in contrast to
Ref. [9], we do not assume an electron-phonon mecha-
nism of relaxation which is extremely weak at low tem-
peratures [10]. Instead, we consider much more effective
inelastic processes due to electron-electron interaction.
One can imagine the experimental geometry where the
direct action of the external force on electrons in the ring
is absent while the one-particle energy distribution devi-
ates from the Fermi-Dirac form. Consider a mesoscopic
ring weakly coupled to the center of a wire connecting
two reservoirs with the temperature T and the chemical
potential difference V [see Fig. 1(a)] maintained by an
applied voltage. For a sufficiently short wire, the distri-
bution of one-particle energies in the ring f�E� is roughly
a superposition of two Fermi-Dirac distributions corre-
sponding to two reservoirs [1] [see Fig. 1(b)].

Below we identify the disorder-averaged dc current
I�r���� in a ring which is entirely due to the relaxation
of this distribution resulting from the electron-electron
interaction. We show that this relaxation-induced current
can be represented in the form Eq. (1) with the flux
harmonics I�r�n expressed through the electron energy dis-
tribution function f�E� � 1

2 �1� hE�:
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e
hg

Z
dEdE0

�
�DE0

D0

��
@R!�E0; E�

@!

�
!�0

; (2)

where �e is the electron charge, g is the dimensionless
conductance of the ring with the perimeter L and the
cross-section area S, Cn �

1
�2��2

P
1
m�1

1
m2 �1� e�2�nm�,

and

R!�E;E0� � ��hE � hE�!��1� hE0hE0�!�

� �hE0 � hE0�!��1� hEhE�!��: (3)

The diffusion coefficient DE � D0 	 �DE is supposed to
have a small but essentially energy-dependent part
�DE 
 D0. It is also assumed that the characteristic
energy scale of the energy dependence in �DE is larger
than the typical energy transfer !� ET � hD0=L

2.
The function R!�E;E0� in Eq. (3) is exactly the combi-

nation of the electron energy distribution function hE that
enters in the inelastic collision integral [11]:

St�E� �
Z
dE0d!P�!�R!�E;E0�: (4)

For the Fermi-Dirac distribution hE � tanh�E=2T� we
have identically R!�E;E0� � 0, and both the relaxation
rate Eq. (4) and the nonequilibrium current Eq. (2) vanish.
This quantifies an intimate relationship between them.

Equations (2) and (3) are the main result of this Letter.
They are valid for the case of a pure potential disorder
with no spin-orbit interaction (orthogonal symmetry
class) for g� 1 as long as T � ET and n
 L’=L,
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where L’ � �DE!
�ring�
’ �1=2 � L is the dephasing length,

and !�ring�’ is the dephasing time in the ring.
The non-Fermi-Dirac form of hE is the necessary but

not the sufficient condition for I�r�n to be nonzero. The
global balance in Eq. (4) requires

R
dESt�E� � 0 which

results from the obvious identity
R
dEdE0R!�E;E0� � 0.

Then one concludes from Eq. (2) that I�r�n � 0 unless the
electron diffusion coefficient DE � v2!E=3 is energy-
dependent.

For the white-noise impurity potential within the
noncrossing (self-consistent Born) approximation, the
product of the elastic scattering time !E and the disorder-
averaged one-electron density of states (DOS) �E is en-
ergy independent !E�E � const. If the energy dependence
of �E is stronger than the dependence of the electron
velocity v�E�, we obtain DE � D0�=�E where � is the
(one-spin) DOS outside the region (near the Fermi en-
ergy) of the strong energy dependence.

Though the nature of the E dependence of �E goes
beyond the scope of this Letter, we note that the electron-
electron interaction results in the strong energy depend-
ence of the one-particle tunnel density of states ��tun�E
exactly at the Fermi level [12–14]. In our problem, the
corresponding DOS ��r�E should be obtained from the
nonperturbative treatment of the electron-electron inter-
action and will be considered elsewhere. An alternative
mechanism of the energy dependence [see Fig. 1(c)] is the
Abrikosov-Suhl [15] peaks in �E at E � V=2 that arise
[4] because of the Kondo effect.

Now we outline the derivation of Eq. (2). We start with
the expression for current density J in terms of the
components of the matrix Green’s function G � �G

R

0
GK
GA�

in the Keldysh technique [11,16]

J �
�i
2
TrfĴJGKg; (5)

where ĴJ is the current density operator, GR;A are the
retarded (advanced) electron Green’s functions, and GK

is the Keldysh function. The matrix Green’s function G �
G0 	 iG0�

FG0 	 iG0�
HG0 is calculated in the first order

in the screened electron interaction U � �U
R

0
UK
UA�, where

G0 is the matrix Green’s function without electron inter-
action in the presence of a static disorder potential, and
�F;H are the Fock and the Hartree self-energy parts due
to electron interaction.

The electron energy distribution function hE enters in
the theory through the Keldysh component of the unper-
turbed matrix Green’s function G0 via the ansatz [11,16]

GK0 �E� � hE�GR0 �E� �GA0 �E��: (6)

The effective interaction U is calculated in the
random-phase approximation which after averaging over
disorder in the limit g� 1 yields:

�UR �UA�!;q �
Z
dE0U!;q�E0��hE0 � hE0�!�; (7)
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FIG. 2 (color online). Disorder averaging of the AAR term in
Eq. (10). Solid lines labeled by R�A� are disorder-averaged
electron Green’s functions hGR�A�0 �E�i with the energy indicated;
the wavy lines are the diffusion propagators (diffusons and
Cooperons) with the momentum and frequency indicated; the
dashed square is the Hikami box with the vector vertex ĴJ
denoted by the bold triangle; the bold solid line is the screened
electron interaction U!;q�E0�.
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where 2i�D0q
2U!;q�E

0� � �D2
0q

4 	!2�=�D2
E0q4 	!2�. It

reduces to the well known expression [11] in the case of
an energy-independent diffusion coefficient �DE0 � 0 if
one uses the identity

R
dE0�hE0 � hE0�!� � 2!. The

Keldysh component of the effective interaction UK!;q
is given by Eq. (7), where �hE0 � hE0�!� is replaced by
�1� hE0hE0�!�.

Rewriting the linear in �F;H terms explicitly in terms
of the components GR;A;K0 and using the ansatz Eq. (6),
one identifies [10] three different interaction-induced
contributions to the current Eq. (5):

I1 � �AAR� RAR���hE � hE�!�U
K
!

� �1� hEhE�!��U
R
! �UA!��;

I2 � ARR�UR! � pUR0 ��1� hEhE�!�

	 RAA�UA! � pUA0 ��1� hEhE�!�;
I3 � �RRR� AAA�hEU

K
! � �1� hEhE�!�

� �RRR�UR! � pUR0 � 	 AAA�UA! � pUA0 ��;

(8)

where AAR � GA0 �E�!�GA
0 �E�ĴJG

R
0 �E�, and the inte-

gral over all E and ! is assumed in Eq. (8). The degen-
eracy factor p � 2 for unpolarized electron spins and
p � 1 if spins are fully polarized by the parallel mag-
netic field.

The three contributions are very different in character.
Since I3 contains only retarded or only advanced Green’s
functions, it vanishes after averaging over disorder at a
constant chemical potential. The contribution I2 amounts
to I�PC�n . In particular, the result of Ref. [17] follows from
this contribution if one assumes the equilibrium Fermi-
Dirac distribution and the multiplicity p � 2. Indeed,
using the identity L @

@�G
R;A
0 �E� � �GR;A0 �E�ĴJGR;A0 �E�,

one concludes that I2 can be expressed in terms of the
flux derivative of the effective energy functional Eeff���
that in the absence of equilibrium stands for the total
energy E��� in Eq. (1). In order to understand the physical
meaning of the additional contribution I1, we invoke the
basis of exact many-body electron states �� and the
corresponding matrix elements of the current operator
J��. In this representation, the ‘‘thermodynamic’’ contri-
bution I2 is expressed in terms of the diagonal matrix
elements J�� only. In contrast to that, the ‘‘kinetic’’
contribution I1 contains only off-diagonal matrix ele-
ments J��. One can check that replacing the current
operator ĴJ in the expression for I1 by the unit operator
results in vanishing of the whole expression, as is required
by the orthogonality of the different many-body wave
functions. Thus, the contribution I1 contains information
on the overlap of the different many-body wave functions
that is totally absent in I2.

We also note that I1 comes entirely from the Fock-type
diagrams, while I2 contains both the Hartree and the
Fock contributions. The two contributions have opposite
signs and the balance between them is controlled by the
multiplicity factor p. Therefore, the thermodynamic con-
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tribution I2 is very sensitive to the parallel magnetic field
that leads to the cancellation of the main part of the
persistent current which is due to the real part of the
screened interaction UR;A. At the same time, the effect of
the parallel magnetic field on the kinetic contribution
reduces merely to a possible variation of the E depend-
ence of DOS.

The contribution hI1i averaged over disorder is exactly
the relaxation-induced nonequilibrium current I�r����.
Substituting Eq. (7) into the first of Eqs. (8), we obtain

I�r�n �
Z 	1

�1

dEdE0

�2��2

Z 	1

�1
d!Jn�E;E

0; !�R!�E;E
0�; (9)
where R!�E;E0� is given by Eq. (3) and Jn�E;E0; !� is the
nth flux harmonic of

X
q�0

h�GA0 �GR0 �E�!G
A
0 �E�ĴJG

R
0 �E�iqU!;q�E

0�: (10)
The disorder average h� � �i in Eq. (10) is done within the
impurity diagrammatic technique. In the leading approxi-
mation in 1=g, the result is described by the diagram
Fig. 2.

The quasi-one-dimensional geometry of rings is taken
into account by the quantization of momenta of diffusion
propagators �DEq2 � i!��1 and the electron interaction
U!;q�E0�, such that the transverse momentum q? � 0,
and the longitudinal momentum qjj � �2�=L��m�
2�=�0� for the Cooperons and qjj � q � �2�m=L� for
the diffusons and the electron interaction, where m �
0;1;2; . . . is an integer. The only constraint is that
the electron interaction must be zero at zero momentum.
Performing the Poisson summation over k, we obtain
176601-3
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Jn�E;E0; !� �
4eDE
gL2 Im

X
q�0

�1� e�nL=L!��D2
0q

4 	!2�

�DEq
2 � i!�3�D2

E0q4 	!2�
;

(11)

where L! � �DE=��i!��
1=2 and g � �DS=L.

The energy dependence of Jn�E;E
0; !� originates

(i) from the E dependence of the triangle of Green’s
functions in Eq. (10) and (ii) from the E0 dependence of
the polarization bubble in the effective interaction
U!;q�E0�. It is easy to see that only the latter is important.
Indeed, let us expand R!�E;E0� in Eq. (9) up to the linear
in! term. IfDE0 � D0 one can perform theWick rotation
�i!! ! that immediately gives

R
1
0 Jn�E;E

0; !�!d! �
0 because of the Im sign in front of the sum in Eq. (11).
This is not true if �DE0 � 0, as in this case the Wick
rotation leads to divergency. A careful analysis shows that
the term proportional to �DE in Eq. (11) makes a con-
tribution to Eq. (9) that is small by the parameter
�ET=T�1=2 
 1 compared to that resulting from �DE0 .
Neglecting this contribution by setting DE � D0, we
arrive at a finite result [Eq. (2)].

Note that Jn�E;E0; !� is not exponentially small at
!� ET . This can be traced back to the structure
GR;A0 �E�!�GR

0 �E�ĴJG
A
0 �E� of the kinetic term I1 that

allows one to build a Cooperon at zero frequency [10].
This is impossible for the thermodynamic term I2 in
which both Green’s functions with the same energy E
are either retarded or advanced. Therefore, the corre-
sponding kernel for the thermodynamic term is propor-
tional to exp��L=L!� � exp��

������������
T=ET

p
�. This is the

reason why the kinetic term wins over the thermody-
namic one for T � ET .

In conclusion, using the Keldysh formalism we identi-
fied two different contributions, thermodynamic and
kinetic, to the disorder-averaged magnetization of meso-
scopic rings with a nonequilibrium distribution of one-
electron energies. Both contributions are caused by the
electron-electron interaction. However, the kinetic con-
tribution is present only out of equilibrium provided that
the one-electron density of states is not constant near the
Fermi energy. This contribution is proportional to the
same combination of the one-electron energy distribution
function as the inelastic relaxation rate and is thus in-
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timately related with the relaxation. In the basis of exact
many-body wave functions of the weakly interact-
ing electron gas, the kinetic contribution is strictly off-
diagonal in contrast to the thermodynamic contribution
(persistent current) that depends only on the diagonal
matrix elements of the current operator. The sign of
the kinetic contribution is not fixed by the basic symme-
try of the problem (orthogonal or symplectic) but depends
on the nature of the energy dependence of the one-
electron DOS.

We are grateful to Igor Aleiner for critical comments
and to B. L. Altshuler for fruitful discussions clarifying
the physical meaning of the kinetic contribution to the
current.
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