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Growing Smooth Interfaces with Inhomogeneous Moving External Fields:
Dynamical Transitions, Devil’s Staircases, and Self-Assembled Ripples
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We study the steady state structure and dynamics of an interface in a pure Ising system on a square
lattice placed in an inhomogeneous external field with a profile designed to stabilize a flat interface and
translated with velocity ve. For small ve, the interface is stuck to the profile, is macroscopically smooth,
and is rippled with a periodicity in general incommensurate with the lattice parameter. For arbitrary
orientations of the profile, the local slope of the interface locks in to one of infinitely many rational
values (devil’s staircase) which most closely approximates the profile. These ‘‘lock-in’’ structures and
ripples disappear as ve increases. For still larger ve the profile detaches from the interface.
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respect to the underlying lattice. The interface is rough
and coarsens with Kardar-Parisi-Zhang (KPZ) [3] expo-
nents � � 1=2 and � � 1=3.

noise. For large times (t!1), Y! vft, where vf is
obtained by solving the self-consistency equation; vf �
limt!1��3 tanhf�vf�ve�t=�g ���3sgn�vf�ve�. For
The ability to grow flat solid surfaces [1] is often of
major technological concern, for example, in the fabri-
cation of magnetic materials for recording devices where
surface roughness [2] causes a sharp deterioration of
magnetic properties. Most growing surfaces or interfaces,
on the other hand, coarsen [3] with a width, �, which
diverges with system size as L� and time as t�, where �
and � (�;� � 0) are the roughness and dynamical ex-
ponents, respectively. Is it possible to drive such an inter-
face with a predetermined velocity vf and, at the same
time, keep it flat (i.e., � � � � 0)? In this Letter, we
explore this possibility by studying growing interfaces in
a nonuniform field with an appropriately shaped profile
moving without change of shape at an externally control-
lable velocity ve. We find that for ve less than a limiting
value v1, it is possible to produce a macroscopically flat,
interface growing with average velocity vf � ve.
Microscopically, however, the interface shows an infinity
of dynamical ripple structures similar to self-assembled,
commensurate-incommensurate (C-I) [4] domains pro-
duced by atomic mismatch [5]. The ripples vanish
with increasing ve through a fluctuation induced C-I
transition.

Real solid-solid interfaces being complex [6], an under-
standing of the dynamics of such interfaces in a general
time-dependent, inhomogeneous field may be achieved
only by beginning with a relatively simple, but nontrivial,
system, viz., an interface in the two-dimensional (2D)
Ising model. Our results, therefore, concern mainly this
model system, though towards the end we discuss possible
modifications, if any, for solid interfaces.

The dynamics of an Ising interface in a (square) lattice
driven by uniform external fields is a rather well studied
[3] subject. The velocity v1 of the interface depends on
the applied field h and the orientation � measured with
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Consider an interface Y�x; t� between phases with mag-
netization, ��x; y; t� > 0 and ��x; y; t�< 0, in a 2D
square lattice [7] obeying single-spin flip Glauber dynam-
ics [8] in the limit h=J; T=J ! 0. Here J is the Ising
exchange coupling and T the temperature. An external
nonuniform field with a profile h�y; t� � hmaxf�y; t� where
f�y; t� � tanh��y� vet�=�	 and � is the width of the
profile [see Fig. 1(a)] is applied such that h � hmax in
the � > 0 and h � �hmax in the �< 0 � regions sepa-
rated by a sharp edge. The driving force depends on the
relative local position of Y�x; t� and the edge. In the low
temperature limit the interface moves solely by random
corner flips [3] [Fig. 1(b)], the fluctuations necessary for
nucleating islands of the minority phase in any region
being absent. We study the behavior of vf and the struc-
ture of the interface as a function of ve and orientation.

Naively, one expects fluctuations of the interfacial
coordinate Y�x; t� to be completely suppressed in the
presence of h�y; t�. Indeed, as we show below, a mean
field theory obtains the exact behavior of vf as a function
of ve [Fig. 1(c)]. Using model A dynamics [9] for a
coarse-grained Hamiltonian (which, for the moment,
ignores the lattice) of an Ising system in a external non-
uniform field together with the assumption that the mag-
netization � is uniform everywhere except near the
interface, one can derive [10] an equation of motion for
the interface.
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where �1, �2, and �3 are parameters and � is a Gaussian
white noise with zero mean. Note that Eq. (1) lacks
Galilean invariance [11] Y0 ! Y
 �x, x0 ! x��2�t, t0 !
t. A mean field calculation amounts to taking Y � Y�t�,
i.e., neglecting spatial fluctuations of the interface and
2002 The American Physical Society 176101-1
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FIG. 1. (a) An Ising interface Y�x; t� (bold curved line) be-
tween regions of positive (marked 
) and negative (marked �)
magnetization in an external, inhomogeneous field with a
profile which is as shown (dashed line). The positions of the
edge of the field profile and that of the interface are labeled Se
and Sf, respectively. (b) A portion of the interface in a square
lattice showing a corner. (c) The interface velocity vf as a
function of the velocity of the dragging edge ve for Ns �
100���; 1000���; 10 000�
�, and � � 0:5. All the data
(�;�;
) collapse on the mean field solution (dashed line).
Inset shows the graphical solution (circled) of the self-consis-
tency equation for vf; dashed line represents vf � vf.
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small ve the only solution [Fig. 1(c), inset] is vf � ve, and
for ve > v1, where v1 � �3, we get vf � �3 � v1. We
thus have a sharp transition [Fig. 1(c)] from a region
where the interface is stuck to the edge to one where it
moves with a constant velocity. How is this result altered
by including spatial fluctuations of Y? This question is
best answered by mapping the interface problem to a 1D
cellular automaton [3,12].

The interface coordinate Y�x; t� in a square lattice is
represented [12,13] by the set of integers fyig, 1< i <
Np denoting positions of Np hard-core (yi
1 � yi 
 1)
particles in a 1D lattice of Ns sites. The particle density
� � Np=Ns determines the mean slope of the interface
tan�f � 1=�, and the motion of the interface by corner
flips corresponds to the hopping of particles with right
and left jump probabilities p and q (p
 q � 1). Trial
moves are attempted sequentially on randomly chosen
particles [12] and Np attempted hops constitute a single
time step. In our case, p and q are position dependent such
that �i�ve t� � p� q � �sgn�yi � i=�� vet� with � �
1. The bias �i�ve t� is appropriate for a step function (� �
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0) profile with the slope of the profile edge equal to the
average slope of the interface. We track the instan-
taneous particle velocity vf�t� defined as the number of
particles moving right per unit time, the average posi-
tion hy�t�i � N�1

p
P
i�1;Np yi�t�, the width �2�t� �

N�1
p

P
i�1;Nph�yi�t� � hyi�t�i�

2i, and the local slope of the
interface given by the local density of particles. Angular
brackets denote an average over the realizations of the
random noise. The usual particle hole symmetry for an
exclusion process [3,12,13] is violated since exchanging
particles and holes alters the relative position of the inter-
face compared to the edge.

We perform numerical simulations [12] of the above
model for Ns up to 104 to obtain vf for the steady state
interface as a function of ve as shown in Fig. 1(c). A sharp
dynamical transition from an initially stuck interface
with vf � ve to a free, detached interface with vf �
v1 � ��1� �� is clearly evident as predicted by mean
field theory. The detached interface coarsens with KPZ
exponents [10]. Note that, even though the mean field
solution for vf�ve� neglects the fluctuations present in
our simulation, it is exact. The detailed nature of the
stuck phase (vf � ve and � bounded) is, on the other
hand, considerably more complicated than the mean field
assumption Y�x; t� � Y�t�.

The ground state of the interface in the presence of
a stationary (ve � 0) field profile is obtained by mini-
mizing E � 1=Np

P
i�yi � i=�� c�2 with respect to the

set fyig and the constant, c, subject to the constraint that
yi are integers. The form of E leads to an additional
nonlocal, repulsive, interaction between particles. The
minimized energy may be calculated exactly, E�� �
m=n� � 1

6 �
1
2 �

1
m��1�

1
m� 


1
4m� 1

4m2 for m even and
1
12 �1�

1
m2� for m odd, where the density � � m=n is a

rational fraction. The energy satisfies the bounds
E�1=n� � 0<E�m=n�< limm!1 E�m=n� � 1=12 where
the upper bound is for an irrational density. For an arbi-
trary 0 < � < 1 the system (fyig) prefers to distort,
conforming within local regions, to the nearest low-lying
rational slope 1=~�� interspersed with an ordered array of
‘‘discommensurations’’ of density �d � j�� ~��j which
appear as long wavelength ripples [see Fig. 3(c), inset,
below]. The ~�� as a function of � shows a ‘‘devil’s stair-
case’’ structure (complete for ve ! 0) with a multifractal
[14] measure. We observe this in our simulation by ana-
lyzing the instantaneous distribution of the local density
of particles to obtain weights for various simple rational
fractions up to generation g � 9 in the Farey tree of
rationals [15]. A time average of the density correspond-
ing to the fraction with largest weight at any t, then give
us the most probable density ~��—distinct from the aver-
age � which is constrained to be the inverse slope of the
profile. For small ve the interface is more or less locked in
to a single ~��, shown as white regions in the phase diagram
(Fig. 2) in the ve � � plane.
176101-2



1/
5

1/
4

1/
3

1/
2

2/
9

2/
7

2/
5

2/
3

3/
8

 ρ

0

0.2

0.4

0.6

0.8

1

FIG. 2. The dynamical phase diagram in ve and � plane. The
numbers on the � axis mark the fractions ~��, which determine
the orientation of the lock-in phase. The three regions—white,
black, and grey— correspond to the rippled, the disordered, and
the detached phases, respectively.
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FIG. 3. Variation of hy�t�i with t for ve � 0:025 and p � 1:0.
Lines denote analytic results while points denote Monte Carlo
data for � � 1=5 (uppermost curve), 2=5, and an incommen-
surate � near 1=3. Insets (a)–(c) show the corresponding
ground-state interfaces (yi � i=�). The arrows in (c) mark
the positions of two discommensurations.
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For low velocities and density where correlation effects
due to the hard-core constraint are negligible, the
dynamics of the interface may be obtained exactly [10].
Under these circumstances the Np particle probability
distribution for the yi’s, P�y1; y2; . . . ; yNp� factorizes into
single particle terms P�yi�. Knowing the time develop-
ment of P�yi� and the ground-state structure, the motion
of the interface at subsequent times may be trivially
computed as a sum of single particle motions. A single
particle (with, say, index i) moves with the bias �i�ve t�
which, in general, may change sign at y<i=�
ve t<y

1. Solving the appropriate set of master equations [10] we
obtain, for ve�1, the rather obvious steady state solution
P�yi��1=2�)yi;y
)yi;y
1�, and the particle oscillates be-
tween y and y
1. Subsequently, when i=�
ve t�y
1,
the particle jumps to the next position and P�yi� relaxes
exponentially with a time constant *�1 to its new value
with y!y
1. In general, for rational ��m=n, the
motion of the interface is composed of the independent
motions of m particles each separated by a time lag of
*L�1=mve. The result of the analytic calculation for
small ve and � has been compared to those from simu-
lations in Fig. 3 for ��1=5 and 2=5. For a general
irrational �<1=2, m!1 and, consequently, *L!0.
The yi’s are distributed uniformly around the mean im-
plying �2�1=3 independent of system size and time. For
�>1=2 the width �2��1���=3� since the number of
mobile particles decreases by a factor of �1���=�.

The forward motion of an irrational interface is ac-
companied by the motion of discommensurations along
the interface with velocity ve which constitutes a kine-
matic wave [3,13] parallel to the interface. As the velocity
ve is increased, the system finds it increasingly difficult to
maintain its ground-state structure, and for * � *L the
instantaneous value of ~�� begins to make excursions to
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other nearby low-lying fractions and eventually becomes
free. Steps corresponding to ~�� � m=n disappear (i.e.,
~�� ! �) sequentially in order of decreasing m, and the
interface loses the ripples. The interface is disordered
though � and � continue to be zero (black region in
Fig. 2). The locus of the discontinuities (within an accu-
racy of 1=Np) in the ~����� curve for various velocities ve
gives the limit of stability of the lock-in rippled phases.

While the stability of mismatch domains [5] is de-
cided, mainly, by competition between mechanical,
long-ranged (elastic), and short-ranged (atomistic) inter-
actions [4], dynamical ripples vanish with increasing ve
through increased fluctuations. We argue that it is suffi-
cient to project the entire configuration space yi of the
stuck interface onto the single variable �. In Fig. 4 (inset)
we have plotted the energy E��� for the ground-state
configuration with density �. As is obvious from the
figure, E��� has a structure similar to the free energy
surface of a 1D ‘‘trap’’ model [16] often used to describe
glassy dynamics. The distinction, of course, is the fact
that the energies of the traps in this case are highly
correlated. We may then describe the dynamics of the
stuck interface as the Langevin dynamics [9] of a single
particle with coordinate �0 diffusing on a energy surface,
given by F��0� � E��0� 
 , ��0 � ��2, kicked by a
Gaussian white noise of strength T. The second term,
containing the modulus ,, ensures that �0 ! � for t!
1. At intermediate times, however, the system may get
trapped indefinitely in some nearby low-lying minimum
with �0 � ~�� if T ( / v2e by symmetry) is not large
enough. As T increases, the time spent in jumping be-
tween minima may exceed the residence time in the
minimum, resulting in a noise induced C-I transition
(Fig. 4) from ~��.
176101-3
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In this Letter, we have studied the static and dynamic
properties of an Ising interface in 2D subject to a nonuni-
form, time-dependent external magnetic field. The system
has a rich dynamical phase diagram with infinitely many
steady states. The nature of these steady states and their
detailed dynamics depends on the orientation of the inter-
face and the velocity of the external field profile. How are
our results expected to change for real driven solid inter-
faces? First, real field profiles would have a finite width
� > 0. However, as long as � is comparable to atomic
dimensions we find no appreciable change in the results.
Second, elastic interaction between ‘‘particles’’ or steps in
the interface [6] may smoothen the devil’s staircase
though we expect that for typical solids this will be
minimal. Third, the structure of the underlying lattice
may influence the stability of particular orientations.
Finally, exciting new physics may come into play as
new modes, e.g., point and line defects [17], as well as
phonon degrees of freedom (leading to acoustic emissions
[6]) are accessed as ve increases.
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