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Four-Terminal Thermal Conductance of Mesoscopic Dielectric Systems
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A four-terminal thermal conductance formula for a mesoscopic dielectric system with arbitrary
central scattering region is derived. Similar to four-terminal electric conductance, the four-terminal
thermal conductance also has a set of Onsager relations. In the temperature T ! 0 limit, in contrast to
the two-terminal thermal conductance which is a monotonic function of T and tends to zero, the four-
terminal thermal conductance is nonmonotonic and tends to 1. We also find that temperatures of the
two terminals without thermal flux become very close to each other at low temperatures. Rather
different behaviors are found for systems satisfying fractional exclusion statistics.
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universal behavior in the zero temperature limit, but it
tends to infinity instead of tending to zero, and the

FIG. 1. Schematic diagram for the four-terminal system with
an arbitrary scattering region.
Recently, the low-temperature heat transport in a
mesoscopic dielectric system in which the wavelength
of thermal phonons can be comparable to the geometrical
size of the system has attracted much attention both
experimentally [1–3] and theoretically [4–9]. Based on
scattering theory as in the electron transport problem, a
two-terminal Landauer formula for thermal flux has been
derived [4,5,7]. The universal quantum of thermal con-
ductance �2k2BT

3h has been predicted [4] and experimentally
observed [1]. For a mesoscopic dielectric system, four-
terminal measurements of thermal conductance �ij;kl
should be experimentally feasible [10], in which two
terminals i; j carry thermal flux to and from the scatter-
ing region while temperatures are measured at the other
two terminals k; l which are at local equilibrium with the
dielectric device. A four-terminal measurement is inter-
esting as it can, in principle, exclude effects of contact
thermal resistance. Theoretically, �ij;kl provide physical
understanding of how energy flux is partitioned among
the multiple leads. Unlike its electric counterpart which is
given by the Landauer-Büttiker conductance formula
[11,12], to the best of our knowledge the physics associ-
ated with the four-terminal quantity �ij;kl has not been
investigated before, and it is the subject of this paper.

In a two-terminal thermal transport at the limiting
temperature T ! 0 where the phonon number associated
with transport tends to zero, the two-terminal thermal
conductance has a universal behavior regardless of the
property of the dielectric scattering region: it tends to
zero and the thermal resistance tends to infinity. This is
different from electric transport in which two-terminal
electric conductance may take any finite value depending
on the scattering region. It is an interesting problem to
understand the properties of the four-terminal quantity
�ij;kl, and, in particular, if it also has a universal tendency
at the T ! 0 limit. Our investigation suggests that the
four-terminal quantity �ij;kl is nonmonotonic in T, unlike
its two-terminal counterpart �ij; �ij;kl indeed has a
0031-9007=02=89(17)=175901(4)$20.00 
Onsager relations �ij;kl � �kl;ij and ��1
ij;kl � ��1

il;jk �
��1
ik;lj � 0 hold.
Consider a four-terminal dielectric system shown in

Fig. 1. The terminals are connected to thermal reservoirs
at equilibrium with temperatures Ti where i � 1; 2; 3; 4,
respectively. The terminal wires are assumed to be per-
fect and phonons coming from reservoirs are not scat-
tered inside the wires. Phonon scattering occurs only in
the scattering region which may have an arbitrary shape
involving defects, rough surfaces, etc. Consider coherent
transport, and we define phonon transmission coefficient
Tji;nm�!� for the process where an incident phonon with
energy �h! from terminal i at phonon mode m is scattered
to terminal j at mode n. From time-reversal invariance,
the transmission coefficient has the property Tji;nm�!� �
Tij;mn�!�. Generalizing the two-terminal derivation of
Ref. [5], the multiterminal expression for energy flux,
_QQi, can be derived by quantizing the classical energy

flux. Such a derivation is tedious but straightforward,
and we obtain flux _QQi from terminal i flowing into the
center scattering region to be [4,5,7,11]

_QQi �
X
j�j�i�

X
m;n

Z �1

max�!im;!jn�

d!
2�

�h!�ni � nj	Tji;nm�!�;

where ni�!� � �exp� �h!=kBTi� � 1	�1 is the Bose-
Einstein distribution function of the phonons in the ith
reservoir, and !im is the cutoff frequency of mode m in
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terminal wire i. For !<!jn, the incident phonon cannot
be scattered to mode j; n, and for!<!im, there does not
exist incident phonons from the mode im. Therefore the
integration begins from max�!im;!jn�. In the following,
we measure temperature Ti from a common background
value T taken as the lowest of the four Ti’s. We further
assume that the differences between Ti’s are so small that
only linear thermal conductance will be studied. Then the
distribution function ni�!� can be expanded as ni�!� �
n�!� � 
Ti

d
dT n�!�, here 
Ti is the temperature differ-

ence Ti � T. The thermal flux can now be rewritten as
_QQi �

P
j�j�i� �ij�
Ti �
Tj�, with

�ij �
X
m;n

Z �1

max�!im;!jn�

d!
2�

�h!Tij;mn
dn�!�
dT

�
Z �1

0

d!
2�

�h!Tij
dn�!�
dT

: (1)
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Here Tij�!� �
P
m;n ��!�!im���!�!jn�Tij;mn�!� is

the total transmission coefficient from terminal j to ter-
minal i, and �ij is the two-terminal thermal conductance.
From time-reversal invariance, we see Tij�!� � Tji�!�
and �ij�T� � �ji�T�. Moreover, one can exactly prove that
the two-terminal thermal conductance �ij�T� is a mono-
tonic function of temperature T [13], a result that is
very different from electric conductance which is not
monotonic in both temperature and bias. At the low-
temperature limit T ! 0, thermal conductance �ij�T�
tends to zero as 
T.

In the following we solve the four-terminal thermal
conductance kij;kl. Letting the terminals i and j carry flux
_QQ to and from the scattering region and letting the other

terminals k and l keep zero thermal flux, we measure
temperatures Tk and Tl [12]. From _QQk � _QQl � 0, the
temperature difference ratio �ij;kl and �ij;kl can be ob-
tained without difficulty:
�ij;kl � 
Tij=
Tkl � ��kl��ik � �il � �kj � �lj� � ��ik � �jk���il � �jl�	=D; (2)

�ij;kl � _QQi=
Tkl � ��ij�kl��ik � �il � �kj � �lj� � �kl��ik � �il���jk � �jl�

� �ij��ik � �jk���il � �jl� � �ik�il�kj�lj���1
ik � ��1

il � ��1
kj � ��1

lj �	=D; (3)
where D � �ik�lj � �il�kj, and 
Tij � Ti � Tj. The
four-terminal quality �ij;kl has several general features.
First, from its definition we have �ij;kl � ��ij;lk �
��ji;kl � �ji;lk. Second, from time-reversal invariance
we have the reciprocity relation �ij;kl � �kl;ij and ��1

ij;kl �
��1
il;jk � ��1

ik;lj � 0. The reciprocity relation indicates that
if one exchanges the roles of terminals for thermal flux
and for temperature measurements, the four-terminal
thermal conductance is the same. On the other hand, the
temperature difference ratios �ij;kl do not satisfy similar
Onsager relations. It is also worth mentioning that if
�ik�jl � �il�jk, the four-terminal ‘‘thermal bridge’’ will
reach equilibrium and the temperature difference 
Tkl
between two terminals k and l is always zero regardless
how large a thermal flux passing through the other two
terminals i and j. In such a situation quantities �ij;kl and
�ij;kl will tend to infinity. As a comparison, for an electric
four-terminal system, if the scattering matrix takes the
Breit-Wigner form, the four-terminal electric bridge
reaches equilibrium in which the voltage difference be-
tween the two voltage terminals is zero [14].

In the rest of this paper, we consider a specific two-
dimensional four-terminal mesoscopic dielectric system,
shown in the inset of Fig. 2(a), in which four semi-infinite
wires parallel to the x axis are coupled to the center
region with sizes b and L. Our goal is still on general
properties of the four-terminal tensor �ij;kl. We permit
different widths for the four-terminal wires so that the
system does not have a mirror symmetry; therefore we
clearly demonstrate that the characteristics of �ij;kl are
not originated from the geometric symmetry.We consider
a scalar model of elasticity [7] where the displacement
field u�x; y� satisfies the wave equation: c2r2u�x; y� �
!2u�x; y� � 0, where c is the sound velocity. If the cou-
pling between three different components of the displace-
ment vector field is small enough, the scalar wave model
is a good model. We assume that incident phonon at mode
n comes from terminal i � 1. Noting the free boundary
condition, the wave functions u�x; y� in the four-terminal
region I-V are written as follows:

uI�x; y� � �1n�y�e
ik1nx �

X
m

r11;mn�1m�y�e
�ik1mx;

uII�x; y� �
X
m

t21;mn�2m�y�e�ik2mx;

uIII=IV�x; y� �
X
m

t3=41;mn�3=4m�y�eik3=4mx;

uV�x; y� �
X
�

�a�n���y�e
ik�x � b�n���y�e

�ik�x	;

where, �im�y� (m � 0; 1; 2; :::) and ���y� (� � 0; 1; 2; :::)
are orthonormal transverse wave functions in terminal i
and center region V, respectively. kim and k� are the
corresponding wave vectors with !2 � c2k2im �!2

im �
c2k2� �!2

�, in which !im � m�c
ai

and !� � ��c
L are cutoff

energies of modes im and �. r11;mn and tj1;mn (j � 2; 3; 4)
are reflection and transmission amplitudes; a�n and b�n
are constants to be determined. We calculate these con-
stants by matching boundary conditions. After solving
r11;mn and tj1;mn (j � 2; 3; 4), the reflection and
transmission coefficients can be obtained straightfor-
wardly, R11;mn�!� � ��!�!1m�jr11;mn�!�j2k1m=k1n and
Tj1;mn�!� � ��!�!jm�jtj1;mn�!�j2kjm=k1n. Here the
function ��!�!jm� is because the outgoing wave vector
�jm is imaginary at !<!jm, so that this wave cannot
175901-2
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FIG. 3. Two-terminal thermal conductance �ij (main plot)
and �ij=T (inset) vs temperature T. Other parameters are the
same as those of Fig. 2.
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FIG. 2. Transmission coefficient Tj1;00 (a) and Tj1 (b) versus
incident phonon frequency !. In (a), the dashed line is for
T21;00; the dotted line is for T31;00; and the solid line is for T41;00.
Inset in (a) is a plot for a specific four-terminal system. Other
parameters: a1 � 40 nm, a2 � 20 nm, a3 � 50 nm, a4 �
30 nm, L � 100 nm, b � 30 nm, and c � 5000 m=s.
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propagate. The transmission coefficient of incident pho-
nons from terminals 2, 3, and 4 can be solved in exactly
the same fashion. Thermal conductance �ij and �ij;kl can
then be obtained from Eqs. (1) and (3), respectively.

Figure 2 shows the transmission coefficient Tj1;00�!�
for the incident wave coming from terminal 1 in mode 0,
and the total transmission coefficient Tj1. They all exhibit
rather complicated oscillating behavior. Tj1;m0�!� must be
less than unity, with

P
j;m Tj1;m0�!� �

P
m R11;m0�!� � 1.

Tji�!� can be greater than unity, due to the opening of
higher modes at larger!. At large!, T41;00 is much larger
than other components of Tj1;00 [Fig. 2(a)]. Because the
wavelengths of thermal phonons become very short at
large !, ballistic phonon transmission is observed in
which the direct transport from terminal 1 to terminal 4
is clearly the easiest and therefore the largest [see the
inset of Fig. 2(a)].

In the following we investigate the small ! limit. At
! ! 0, the transmission coefficient tends to Tij �
Tij;00 �

4aiaj
a2 , and the reflection coefficient tends to Rii �

Rii;00 �
�a�2ai�2

a2
where a �

P
4
i�1 ai. Note that they are

dependent only on the width of the terminal and are
independent of the scattering region sizes L and b. This
is actually expected since at small !, the wavelength of
the phonon is large, and when it becomes much larger
than the dimension of the scattering region, the displace-
ment field u�x; y� becomes essentially the same through-
out. Similarly, for two-terminal mesoscopic systems at
175901-3
the !! 0 limit, we have T12 �
4a1a2
a2 � 1 and R11 �

�a�2a1�2

a2 � 0 (a1 � a2), also independent of the scattering
region [4,6].

Next, we investigate �ij by plotting �ij and �ij=T in
Fig. 3 and its inset. �ij is a monotonic function of tem-
perature T. At high temperature, e.g., T > 1 K, �ij 
 T2.
At low temperature, e.g., T < 0:1 K, �ij 
 T. In some
temperature ranges, �ij may also exhibit a T$ scaling
with $ < 1, e.g., �13 in the range of 0:2< T < 0:5 K.
These results are consistent with previous works for
two-terminal systems [4,6,8]. �ij=T versus T may exhibit
nonmonotonic behavior and it can have a minimum at
T � 0 (see �12=T and �13=T, inset of Fig. 3). Similar
results have been seen in the experiments of Schwab
et al. [1]. Note, although here the two-terminal quantity
�ij is actually measured between two terminals of a four-
terminal device, it has the same property as that of a two-
terminal device [1,4,6,8].We emphasize, again, that at the
T ! 0 limit in which the wavelength of incident phonons
is much larger than the dimension of the scattering
region, �ij=T tend to ��4aiaj�=�a2�	���2k2B�=�3h�	 �
���2k2B�=�3h�	Tij�0�, which is dependent only on the width
of the terminal and is independent from the shape of the
scattering region. To put the magnitudes into perspective,
if the linear size of the scattering region is 100 nm,
phonons whose wavelength is 10 times larger correspond
to a temperature scale T � �h!

kB
� hc

kB%
� 0:2 K, which is

experimentally realizable.
Next, we instigate the four-terminal quantity �ij;kl

which is shown in Fig. 4. Unlike the two-terminal quan-
tity �ij which is monotonic, �ij;kl is a nonmonotonic
function of temperature T as indicated by one or more
extremely small values. At high temperatures, j�ij;klj is
proportional to T2, similar to �ij. However, at the low-
temperature limit (T ! 0), j�ij;klj does not tend to zero as
�ij does; it tends to 1 as T�1, i.e., thermal resistance
tends to vanish. This result is quite surprising indeed.
From Eq. (3), j�ij;klj is in proportion to the two-terminal
thermal conductance, therefore it apparently should go as
175901-3
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FIG. 4. Four-terminal thermal conductance �ij;kl (left scale)
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T, not T�1. However, at T ! 0, since �ij is proportional to
��4aiaj�=�a2�	T, �ik�lj � �il�kj, and D! 0. This means
that the thermal bridge reaches equilibrium at T ! 0.
Hence, the temperatures measured at the two temperature
terminals k and l will be almost the same. This gives rise
to j�ij;klj ! 1. To show more clearly the physical mean-
ing of this result, we plot a temperature difference ratio
�14;23 �


T14

T23

in Fig. 4. It clearly exhibits that at T ! 0,
j�14;23j ! T�2. In other words, at very low temperature,
to have a finite 
T14 so that there is a flux flowing between
terminals 1 and 4, the temperature difference 
T23 of the
other two terminals with zero flux tends to vanish as 
T2.
As a numerical example, at higher temperatures, e.g.,
T � 3 K for which �14;23 � 25, hence to maintain

T14 
 0:5 K, we obtain 
T23 � 20 mK which is an
appreciable temperature difference. At lower temperature
T � 100 mK we found �14;23 
 1500; to maintain

T14 
 500 mK the temperature difference 
T23 is
merely 0.33 mK, i.e., T2 � T3. Finally, it is important
to note the following two points: (i) the result that
j�ij;klj ! 1 at low temperature is independent from
the shape of the scattering region; (ii) this result is
very different from the behavior of four-terminal
electric conductance which generally takes a finite value
at T � 0 [12,14].

So far we have studied the general behaviors of �ij and
�ij;kl for multiterminal systems. It is an interesting theo-
retical problem to examine to see if these behaviors hold
for fractional exclusion statistics (FES) [15]. This can be
investigated by replacing the Bose-Einstein distribution
n�!� in Eq. (1) by the FES distribution function ng�!�,
with ng�!� � �W� �h!�(kBT

� � g	�1 where ( is the particle
chemical potential and W�~))�g�1�W�~))�	1�g � e~)) . For
g � 0 or 1, ng�!� becomes the Bose-Einstein or Fermi-
Dirac distribution, respectively. Following a similar line
of derivation as discussed above, we find that the Onsager
relations are still valid for FES. One can also prove that
the monotonic behavior of �ij can survive only for g � 0,
i.e., for the phonon system. For g > 0, our investigation
indicates that �ij and �ij;kl can be nonmonotonic or a
175901-4
monotonic function of T, depending on the specularity
of each device. At the low-temperature limit, �ij tends to
�2k2BT
3h Tij�(� for all g. For g > 0, the thermal bridge may

be in a nonequilibrium state, in that case �ij;kl tends to
zero as �ij does. When it is at equilibrium, �ij;kl may tend
to any value for g > 0. Therefore, the results for FES are
quite different from the Bose-Einstein statistics in which
�ij;kl tends to 1 at very low T.

In summary, we have examined the physical behavior
of four-terminal thermal conductance for mesoscopic
dielectric systems with arbitrary shapes of a scattering
region. For the phonon system, �ij is a monotonic
function of T and �ij;kl is nonmonotonic. In the low-
temperature limit, j�ij;klj tends to infinite as 
T�1; �ij
tends to zero as 
T; and the temperature difference of the
two terminals without thermal flux tends to zero as 
T2.
For fractional exclusion statistics (g > 0), �ij and �ij;kl
may be monotonic or a nonmonotonic function of T
which is dependent on the special details of a device.
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