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Evidence for particle stability of 4
��H has been suggested by the BNL-AGS E906 experiment. We

report on Faddeev-Yakubovsky calculations for the four-body ��pn system using �N interactions
which reproduce the observed binding energy of 3

�H�
1
2
�� within a Faddeev calculation for the �pn

subsystem. No 4
��H bound state is found over a wide range of �� interaction strengths, although the

Faddeev equations for a three-body ��d model of 4
��H admit a 1� bound state for as weak a ��

interaction strength as required to reproduce B���
6

��He�.
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weak decays and were conjectured as due to the formation
of 4H (I � 0, J� � 1�) [11]. A subsequent theoretical

effective range for a given model as close as possible. Its
appropriate values for �N are listed in Table II for two
Information on hyperon-hyperon interactions is not
readily available from experiments in free space. It is
almost exclusively limited to the study of strangeness S �
�2 hypernuclear systems, only a handful of which have
been identified to date. This information is crucial for
extrapolating into multistrange hadronic matter, for both
finite systems and in bulk (Ref. [1] and references cited
therein). Until recently only three candidates, identified
in emulsion experiments [2–4], existed for �� hyper-
nuclei. The �� binding energies deduced from these
events indicated that the �� interaction is strongly at-
tractive in the 1S0 channel [5], in fact, considerably
stronger than the �N interaction deduced from single-�
hypernuclei, and this seemed at odds with the natural
expectation borne out in one-boson-exchange models us-
ing flavor SU(3) symmetry or within the naive quark
model. For example, the recent Nijmegen soft-core
(NSC97) model [6,7] yields


VV�� � 
VV�N � 
VVNN (1)

for the strength 
VV of these essentially attractive interac-
tions. It is gratifying then that the recent unambiguous
identification of 6

��He in the KEK hybrid-emulsion ex-
periment E373 [8], yielding binding energy substantially
lower than that deduced from the older dubious event [3],
is consistent with a scattering length a�� ��0:5 fm [9],
indicating a considerably weaker �� interaction than that
specified by a�N ��2 fm [6] for the �N interaction.
With such a relatively weak �� interaction, and since
the three-body system ��N is unbound (comparing it
with the unbound �nn system [10]), the question of
whether or not the onset of binding in the S � �2 ha-
dronic sector occurs at A � 4 becomes highly topical.

The Brookhaven alternating-gradient synchrotron
(AGS) experiment E906, studying �� capture following
the �K�; K�� reaction on 9Be, has recently given evidence
for excess pions that defied known single-� hypernuclear

��
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study [12] of the weak-decay modes available to 4
��H

does not support this conjecture and, in our opinion, the
question of whether or not 4

��H is particle stable remains
experimentally open. If it is confirmed in a future exten-
sion of E906 or of a related experiment, then this four-
body system ��pn would play as a fundamental role for
studying theoretically the hyperon-hyperon forces as the
3
�H bound state of the three-body system �pn has played
for studying theoretically the hyperon-nucleon forces
(Ref. [13] and references cited therein). Our aim in this
Letter is to search theoretically for a possible 4

��H bound
state by solving the appropriate Faddeev-Yakubovsky
equations for the four-body system ��pn, particularly
for �� interactions which reproduce the recently de-
duced binding energy of 6

��He [9]. This is the first ever
systematic Faddeev-Yakubovsky calculation done for the
A � 4, S � �2 problem. It has the virtue of taking into
account properly all the rearrangement channels (or,
equivalently, clusters) into which the ��pn system may
be split. We note that a 3

�H bound state does not necessa-
rily imply, for attractive �� interactions, that 4

��H is
particle stable.

The �N and �� interaction potentials used as input
were of a three-range Gaussian s-wave form similar to
that used by Hiyama et al. [14,15]:

V�2S�1��r� �
X3
i

v�2S�1�
i exp

�
�

r2

�2
i

�
: (2)

The values of the range parameters �i and of the singlet-
and triplet-strength parameters v�2S�1�

i are listed in
Table I. The �� interaction, respecting the Pauli prin-
ciple, is limited to the singlet s-wave channel. The
short-range term (i � 3) provides for a strong soft-core
repulsion and the long-range term (i � 1) for attraction.
The parameter �, which controls the strength of the
midrange attractive term (i � 2), was chosen such that
the potential (2) reproduces the scattering length and the
2002 The American Physical Society 172502-1



TABLE III. B�

3
�H�

1
2
��� and �d low-energy doublet scatter-

ing parameters (2B� in MeV; 2a, 2r in fm) calculated for the
I � 0 �pn system. 4Bscatt

� (in MeV) for 3
�H�

3
2
�� was obtained

using the effective-range expansion in the quartet �d channel.

Model 2a 2r 2B�
4Bscatt

�

NSC97e 20.7 2.61 0.069 0.015
NSC97f 13.1 2.46 0.193 0.003
NSC97f’ 13.1 2.46 0.193 �0:003

EFT [18] 16:8�4:4
�2:4 2:3� 0:3 0:13� 0:05

exp. 0:13� 0:05
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TABLE I. Range (�) and strength (v) parameters of the
three-range Gaussian potential (2).

i �i (fm) v�1�
i (MeV) v�3�

i (MeV)

1 1.342 �21:49 �21:39
2 0.777 �379:1 ��1� �379:1 ��3�

3 0.350 9324 11359
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versions of model NSC97 [6] considered realistic ones.
For �� we listed the value which was determined in
Ref. [9] to reproduce the recently reported B���

6
��He�

[8]. Also listed are the values of the scattering lengths for
these �N and �� model interactions which obviously
satisfy Eq. (1). For the pn triplet interaction we multiplied
the �N potential (2) by a factor � � 2:0685, using ��3�

pn �
1:0498, in order to reproduce the NN low-energy scatter-
ing parameters in this channel plus the binding energy of
the deuteron. We used, for comparison, also the Malfliet-
Tjon potential MT-III [16]. Our results are insensitive to
which form is used.

We solved the differential Faddeev equations under the
s-wave approximation [17] for the I � 0, J� � 1

2
� ; 32

�

ground-state doublet levels of 3
�H viewed as a �pn sys-

tem. Similar calculations for three-body systems are dis-
cussed in Ref. [9]. Some of our results are displayed in
Table III. The 1

2
� ground state is bound and the calculated

binding energies of the � hyperon (B�) are in rough
agreement with that observed. For model NSC97f, for
example, our calculated B� � 0:19 MeV agrees with that
of the recent Hiyama et al. [19] where no s-wave approxi-
mation was invoked. The impact of the higher partial
waves for 3

�H was estimated by Cobis et al. [20] to be
of order 0.02 MeV, well within the error of the measured
binding energy. Our B� values satisfy the effective-range
expansion in terms of �d low-energy parameters which
are close to those derived using effective field theory
(EFT) methods [18]. The convergence of the Faddeev
calculation using model NSC97f for the �N interaction
is exhibited in Fig. 1 as a function of the number N of
basis functions. The corresponding curve, marked
‘‘�pn,’’ gives the B� value with respect to the horizontal
straight line marked ‘‘�� d threshold.’’ The �pn
asymptote serves then for defining the lowest particle-
stability threshold, that of �� 3

�H, in the four-body
��pn calculation described below. The 3

2
� (unobserved
TABLE II. Values of the parameter ��2S�1� appropriate for
simulating the �p potentials of model NSC97 and for a ��
potential reproducing B���

6
��He�. The resulting scattering

lengths a (in fm) are also listed.

Model ��1� 1a ��3� 3a

�N: NSC97e 1.0133 �2:10 1.0629 �1:84
�N: NSC97f 1.0581 �2:50 1.0499 �1:75
��: 6

��He [9] 0.6598 �0:77 	 	 	 	 	 	
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and probably unbound) excited state of 3
�H comes out very

weakly bound in our Faddeev calculation in both versions
e and f of model NSC97. In order to check the sensitivity
of the four-body calculation to the location of 3

�H�
3
2
��, we

give below results also for model NSC97f’, where f0

coincides with f for the 1
2
� channel but slightly departs

from it for the 3
2
� channel as shown in Table III.

Focusing on the ��pn Faddeev-Yakubovsky calcula-
tion, we note that for two identical hyperons and two
essentially identical nucleons (upon introducing isospin),
as appropriate to the I � 0, J� � 1� ground state of 4

��H,
the 18 Faddeev-Yakubovsky components which satisfy
coupled equations reduce to seven independent compo-
nents, in close analogy to the Faddeev-Yakubovsky equa-
tions discussed in our recent work [9] for the ����
model of 10

��Be. Six rearrangement channels are involved
in our s-wave calculation for 4

��H:

��NN�S�1=2 ��; ��NN�S�3=2 ��;

���N�S�1=2 � N
(3)

for 3� 1 breakup clusters, and
-2.6

-2.5

2 4 6 8 10 12 14

N

ΛΛd

FIG. 1. Convergence of Faddeev-Yakubovsky calculations for
the binding energy of the �pn (S � 1=2), ��d, and ��pn
(S � 1) systems with respect to the number N of basis func-
tions. Values of Rcutoff � 30 fm for ��pn and �pn, and 60 fm
for ��d, were used. The �� interaction is due to Table II.
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FIG. 2. B���
4

��H� calculated in a three-body ��d model as
a function of the scattering length a��, for two exponential �d
potentials corresponding to versions f and f0 in Table III. The
solid squares correspond to the 6

��He �� interaction of Table II.
The straight lines are drawn only to lead the eye.
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����S�0 � �NN�S�1; ��N�S � ��N�S0 (4)

with �S; S0� � �0; 1� � �1; 0� and �1; 1� for 2� 2 breakup
clusters. We find invariably that the three rearrangement
channels, in which the two nucleons belong to the same
d-like cluster, dominate in actual calculations. This ob-
servation, apparently, could justify the use of a ��d
model for 4

��H. However, as we shall see and discuss
below, the results of using such a three-body model differ
radically from those of the full four-body Faddeev-
Yakubovsky calculations which retain the proton and
neutron as dynamically independent entities.

Using the �� interaction which reproduces
B���

6
��He� (see Table II), our calculations yield no bound

state for the ��pn system, as demonstrated in Fig. 1 by
the location of the ‘‘��pn’’ curve above the horizontal
straight line marking the ‘‘�� 3

�H threshold’’ [21]. In
fact, our Faddeev-Yakubovsky calculations exhibit little
sensitivity to the strength of the �� interaction over a
wide range, including much stronger �� interactions
such as the Nijmegen D (ND) model and the extended
soft core 2000 (ESC00) model discussed in Ref. [9], the
latter one reproducing the (excessive) B�� value reported
for the ‘‘old’’ 6

��He event [3]. For these �� interactions,
we get a bound 4

��H only if the �N interaction is made
considerably stronger, by as much as 40%. With four �N
pairwise interactions out of a total of six, the strength of
the �N interaction (here about half of that for NN bind-
ing the deuteron) plays a major role in the four-body
��pn problem. In passing, we remark that this is also
apparent from the bounds derived in Ref. [22] for the
four-body bound-state problem. Put differently, we know
of no few-body theorem that would imply, for essentially
attractive �� interactions and for a nonstatic nuclear
core d (made out of pn in the present case), the existence
of a ��d bound state provided that �d is bound. It
is a remarkable outcome of the complete Faddeev-
Yakubovsky scheme for four particles that such a natural
expectation can be refuted by a specific calculation.
However, for a static nuclear core d, and disregarding
inessential complications due to spin, a two-body �d
bound state does imply binding for the three-body ��d
system [23]. A discussion of the formal relationship be-
tween these four-body and three-body models which do
not share a common Hamiltonian is deferred to a subse-
quent publication.

Our ��d model for 4
��H uses the �� interaction

marked ‘‘ 6
��He’’ in Table II plus �d interactions that

reproduce the low-energy parameters of the �pn
Faddeev calculation specified in Table III. The depen-
dence on the functional form chosen for the interpolating
�d interaction potentials proved relatively mild. The
results of such a ��d three-body Faddeev calculation
using model NSC97f for the underlying �N interaction
are shown in Fig. 1 as function of the number N of basis
functions used in the expansion of the Faddeev compo-
172502-3
nents. The asymptote of the curve marked ��d is now
located below the horizontal straight line for the �� 3

�H
threshold, so 4

��H is particle stable. The figure may sug-
gest that a � in 4

��H is less bound, by about 0.1 MeV, than
a � in 3

�H (which in model NSC97f is bound by about
0.2 MeV). However, the �2J� 1� spin-averaged effective
B��

3
�H� in 4

��H is only 
BB� � 0:07 MeV and, since
B�� � 0:3 MeV, we have B�� > 2 
BB�, which is equiva-
lent to stating loosely that the second � in 4

��H is bound
even more strongly than the first one. This holds also for
model NSC97e and it is a general property of the Faddeev
calculation [9].

In Fig. 2 we show B�� values calculated for 4
��H

within this ��d Faddeev model as a function of 
VV��

(quantified by the value of the scattering length a��) for
two exponential �d potentials corresponding to versions
f and f0 of model NSC97 (see Table III). The roughly
linear increase of B�� holds generally in three-body
��C models (C standing for a cluster) over a wide range
of values for 
VV�� [9]. For values B�� � 0:2 MeV, 4

��H
becomes unstable against emitting a �. This onset of
particle stability for 4

��H requires a minimum strength
for the �� interaction which is satisfied for our choice of
6

��He as a normalizing datum. It is also seen from the
figure that the uncertainty in the location of 3

�H�
3
2
�� bears

serious consequences for the predicted binding of 4
��H;

this is a particularly strong effect as the 3
2
� state crosses

the �� d threshold. Yet, we would like to emphasize that
no such sensitivity emerges within a genuine four-body
model calculation which does not bind 4

��H as long as the
�N interaction is of the size constrained by single-�
hypernuclear phenomenology.

In cluster models of the type ��C and ��C1C2 for
heavier �� hypernuclei, where the nuclear-core cluster
C � C1 � C2 is made out of subclusters C1 and C2, the
172502-3
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�Cj interaction (normally producing bound states) is
considerably stronger than for �N. Our experience with
Faddeev-Yakubovsky calculations for 10

��Be [9], viewed as
a four-body ���� system, is that the relationship be-
tween the three-body and four-body models is then oppo-
site to that found here for 4

��H: the ��C1C2 calculation
under similar conditions provides higher binding than the
��C calculation yields. The mechanism behind it is the
attraction induced by the �C1-�C2, ��C1-C2, C1-��C2

four-body rearrangement channels that include bound
states for which there is no room in the three-body
��C model. The binding energy calculated within the
four-body model increases then ‘‘normally’’ with 
VV��.

In conclusion, we have provided a first four-body
Faddeev-Yakubovsky calculation for 4

��H using NN and
�N interaction potentials that fit the available data on the
relevant subsystems, including the binding energy of 3

�H.
No bound state is obtained for 4

��H over a wide range of
�� interaction strengths, including that normalized to
reproduce the binding energy of 6

��He. We have traced the
origin of this nonbinding as due to the relatively weak
�N interaction. This is in stark contrast to the results of a
‘‘reasonable’’ three-body ��d Faddeev calculation that
binds 4

��H provided the �� interaction is not too weak,
say, with �a�� � 0:5 fm.
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