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Exclusive Photoproduction of Hard Dijets and Magnetic Susceptibility of the QCD Vacuum
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3CPhT, École Polytechnique, F-91128 Palaiseau, France*
4Soltan Institute for Nuclear Studies, Hoza 69, 00-681 Warsaw, Poland

(Received 1 July 2002; published 3 October 2002)
172001-1
We argue that coherent production of hard dijets by linearly polarized real photons can provide direct
evidence for chirality violation in hard processes, the first measurement of the magnetic susceptibility
of the quark condensate and the photon distribution amplitude. It can also serve as a sensitive probe of
the generalized gluon parton distribution. Numerical calculations are presented for HERA kinematics.
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The QCD vacuum is a highly complex state. It has a
nontrivial particle and energy density characterized by
quark and gluon condensates and complicated dynamical
properties that characterize its response to external
probes. In particular, consider quarks and antiquarks in
the QCD vacuum in a constant (electro)magnetic field [1].
In the weak field, the induced magnetization of the vac-
uum is proportional to the applied field, the quark density
h �qqqi, the quark electric charge eq, and a constant � that is
called magnetic susceptibility. In relativistic notation

h0j �qq���qj0iF � eq�h �qqqiF��; (1)
0031-9007=02=89(17)=172001(4)$20.00 
where F�� denotes the electromagnetic field strength. If
the magnetic field is varying with a certain frequency, the
magnetic susceptibility is replaced by the corresponding
response function which is nothing else but the photon
distribution function in the infinite momentum frame.

To be more precise, the wave function of a real pho
ton contains both the perturbative chiral-even (CE) con-
tribution of the quark-antiquark pair with opposite
helicities, and the nonperturbative chiral-odd (CO) con-
tribution with quarks having the same helicity and which
is due to the chiral symmetry breaking. The perturbative
CE contribution is singular �1=jrj at small transverse
distances r and well known:
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�

1	 
5
2

q�x�j
����q�i �
iNceq
4�2r2

q�
Z 1

0
due
iu�qx���e��� � r��2u
 1� 	 i�ikrie

���
k ; (2)

where �ik � �ik�
 is the two-dimensional antisymmetric tensor in the transverse plane, eu � �2=3�
����������������
4��EM

p
, ed �


�1=3�
����������������
4��EM

p
, etc. The nonperturbative CO contribution is regular at small transverse separations (apart from the

logarithms) and can be parametrized by the photon distribution amplitude �
�u;�� [2]

h0j �qq�0����q�x�j

����q�i � ieq�h �qqqi�e

���
� q� 
 e���� q��

Z 1

0
due
iu�qx��
�u;��: (3)

Here the normalization is chosen as
R
du� �u� � 1, and



u stands for the momentum fraction carried by the quark.
The distribution amplitude �
�u;� � 1 GeV� is be-

lieved to be not far from the asymptotic form

�as

 �u� � 6u�1
 u�: (4)

The magnetic susceptibility was estimated using the vec-
tor dominance approximation and QCD sum rules [3,4]:

�h �qqqi ’ 40–70 MeV �at � � 1 GeV�: (5)

However, any direct experimental evidence on both � and
�
�u� is absent. The CO contribution in photoproduction
was discussed only once in [5] for the vector meson
production at large t.

In this Letter we argue that this structure can be
studied in experiments for the exclusive hard light flavor
dijet production off nucleons (and nuclei)

� N ! � �qqq� � N; (6)

similar to the recent studies of coherent dijet production
by incident pions by the E791 Collaboration [6]. In
particular, we will show that perturbative (chirality con-
serving) and nonperturbative (chirality violating) contri-
butions can be separated by the different dependence on
the longitudinal momentum of the dijets and on the
azimuthal angle.

The approach of [6] is different as compared to earlier
studies of the dijet photoproduction [7] in that the ex-
clusive dijet final state is identified by requiring that the
jet transverse momenta are compensated to a high accu-
racy within the diffractive cone and by making some
additional cuts. This approach seems to work for the
case of coherent dijet production from nuclei by inci-
dent pions, and for photoproduction the corresponding
2002 The American Physical Society 172001-1
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experimental program is under way at HERA [8]. We
assume that separation of the exclusive light q �qq dijet final
state is feasible.

The kinematics of the process and the notation for the
momenta are shown in Fig. 1. The Sudakov decomposi-
tion of the jet momenta with respect to the momenta of
the incoming particles p1 and p2 reads

q1 � zp1�
q2?
zs

p2� q?; q2 � �zzp1�
q2?
�zzs

p2
 q?; (7)

so that z is the longitudinal momentum fraction and q?
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FIG. 1 (color online). Sample diagrams for the hard dijet
photoproduction; see text.
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the transverse momentum of the quark jet. Hereafter we
use the shorthand notation �uu��1
u� for any longitu-
dinal momentum fraction u. Note that we consider the
forward limit, when transverse momenta of the jets com-
pensate each other. In this kinematics the invariant mass
of the produced q �qq pair is equal to M2�q2?=z�zz, and the
momentum of the outgoing nucleon p0

2�p2�1
��=
�1���, where ��M2=�2s
M2�’M2=2s, s��p1�p2�

2.
Since the CE and CO contributions lead to final states

with different helicity, they do not interfere and the dijet
cross section is given by the incoherent sum, for the
linearly polarized photon
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where � is the azimuthal angle between the jet direction

and the photon polarization �e��� � q?� � cos�, JCE and
JCO are the CE and CO amplitudes, respectively, and the
prefactors are introduced for future convenience. Note
that the CE contribution is �1=q6? [9] and the CO con-
tribution is suppressed by one extra power of q2? which
follows from twist counting. The different � dependence
can be traced to the fact that the q �qq pair is produced in a
state with orbital angular momentum Lz � 0 and Lz �
	1 for the CO and CE contributions, respectively.

The CE contribution originates from the region of
large momenta flowing through the photon vertex and
was considered previously in [10–13] in the high energy
limit using k? factorization. We believe that the collinear
factorization is more adequate for HERA energies and, in
difference to the dijet production by incident pions [14],
expect that it is valid for the CE amplitude to all orders in
perturbation theory. Hence the amplitude JCE is given by
the convolution integral of the coefficient function and
the generalized parton distribution, cf. [14]. For high
energies the gluon contribution is dominant. To leading
order (LO) in the strong coupling �s � �s�q?� the am-
plitude is given by the sum of Feynman diagrams of the
type shown in Fig. 1(a) with all possible attachments of
the gluons. The answer reads
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where H g�y; �� � H g�
y; �� is the generalized gluon
distribution in the symmetric notation [15]; y� � and
y
 � are the t-channel gluon momentum fractions with
respect to �p2 � p0
2�=2. The full calculation of the next-

to-leading order (NLO) contribution goes beyond the
tasks of this Letter. For the reasons explained below it
is necessary, however, to include the leading NLO con-
tribution at large energies (enhanced by log�) which
corresponds to an additional gluon exchange between
the t-channel gluons, see Fig. 1(b). Including this contri-
bution, the imaginary part of the amplitude equals

ImJCE � �H 0
g��; �� �

�sNc

�

Z 1

�

dy
y� �

H g�y; ��; (10)

where H 0
g��; �� � dH g�y; ��=dyjy��. The real part is

smaller and can be neglected in the first approximation.
For high energies alias y ! 0, H g�y; �� � y
�, where

in perturbation theory �� �s logs=q2? has to be treated
as a small parameter. Therefore, despite the fact that the
two terms in (10) appear in different orders in the col-
linear expansion, they are of the same order as far as the
counting of energy logarithms is concerned. This feature
is specific for real photons and can be traced to the fact
that the LO amplitude in (9) only contains a (rather
unusual) double pole, but no single poles [cf. (11)].
Since H g�y; �� �G�y� at y � �, and as the factor
�sNc=��y� is nothing but the low-y limit of the gluon
splitting function, the integral in Eq. (10) can be identi-
fied to logarithmic accuracy with the unintegrated gluon
distribution f��; q2� � @G��; q2�=@ lnq2. This contribu-
tion corresponds to the one considered in [10–12] in the
k? factorization approach. The first contribution in (10) is
analogous to Eq. (42) in [13].

For the nonperturbative CO contribution the large mo-
menta are not allowed in the photon vertex and the
factorization formula contains a convolution with the
photon distribution amplitude. In this case an additional
hard gluon exchange is mandatory and the diagram in
Fig. 1(b) presents one example of the existing 31 LO
contributions, cf. Fig. 11 in Ref. [14]. The calculation of
this contribution is similar to the case of pion diffraction
dijet production considered in much detail in [14]. Here
we present only the final result (CF � �N2

c 
 1�=�2Nc�):
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Integration over the quark longitudinal momentum frac-
tion contains a logarithmic divergence at the end points
u ! 0; 1 which signals that the collinear factorization is
violated. The divergent contribution is purely imaginary
and reads

J IR
CO � 2iH g��; ��
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(12)
where we have introduced an infrared cutoff umin �
�2
IR=q

2
?. In numerical calculations we use �IR �

500 MeV. The origin of the factorization breaking is
that both final and initial state interactions are present
and lead to pinching of the integration contour in the so-
called Glauber region; see [14] for a detailed discussion.
In the present context violation of factorization is proba-
bly not surprising since the CO contribution is suppressed
by a power of q2? compared to the leading twist.

Another important integration region for the quark
momentum fraction in (11) is � � ju
 zj � 1 which
produces a logarithmic enhancement in energy:

JDLA
CO � 4iNc�
�z�

Z 1

�

dy
y� �

H g�y; ��: (13)

Hence in the double-logarithmic approximation collinear
factorization is valid for the CO contribution as well.

Assuming that the photon distribution amplitude
�
�z;� � q?� is close to the asymptotic form (4), we
obtain JCO � z�1
 z� for both integration regions, up to
small corrections. The IR divergence in (12) does not
have, therefore, any significant effect on the jet distribu-
tion but mainly influences the normalization.

In the numerical calculation presented below we have
taken into account the full result in (10) and the imagi-
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FIG. 2. The cross section d�
�N!2 jets�N=dq
2
?; see text. The

dashed curve corresponds to the calculation with the lower
limit in the integral in (10) changed to 2� and a different IR
cutoff �IR � 350 MeV.
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nary part of the CO contribution in (11). Calculations are
done for HERA kinematics, s � 10 000 GeV2 and the
value �h �qqqi � 50 MeV, cf. (5). We use the parametriza-
tion of the generalized gluon distribution by Freund and
McDermott [16] that is based on the MRST2001 leading-
order forward distribution [17]. The transverse momen-
tum dependence of the cross section integrated over �, z,
and t [18] is shown in Fig. 2. For q? > 4 GeV the cross
section is dominated by the perturbative CE contribution.
The nonperturbative CO contribution at q? � 4–6 GeV is
of the order of
d�CO=dq2?
d�CE=dq2?

’ �7	 2 GeV�2
�s�q?�2

q2?

	
�h �qqqi
50 MeV



2
: (14)

Note a large mass scale which is due to the kinematical
enhancement of the CO amplitude by a large factor 4�2;
compare (2) and (3). On top of this, the two contributions
in (10) have opposite sign and tend to cancel. For large
transverse momenta the first term dominates, which is
natural since it is leading order in the collinear expansion.
However, progressing towards lower q? one effectively
goes over to smaller values of Bjorken x� 2� so that the
second contribution eventually becomes larger than the
first one and the imaginary part of CE amplitude changes
sign. This explains an abrupt change of the slope of the
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FIG. 3. The differential cross section d�
�N!2 jets�N=dq
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?dz

(a) and, d�
�N!2 jets�N=dq2?d� (b) for jet transverse momen-
tum q? � 5 GeV. Identification of the curves is the same as in
Fig. 2.
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cross section at q? � 3 GeV. For smaller transverse mo-
menta the dijet cross section is dominated by the CO
contribution. Because of the cancellations in the CE
contribution at q? � 2:5–3:5 GeV the complete NLO cal-
culation is required to make the predictions in this region
fully quantitative. As a crude estimate of the uncertainties
we show as a dashed curve in Fig. 2 the results if the lower
limit in the integral in (10) is changed to 2� and with a
different IR cutoff �IR � 350 MeV.

The transition between the two different regimes is
seen very clearly from the dependence of the cross section
on the dijet longitudinal momentum fraction and the
azimuthal angle; compare Figs. 3 and 4. At q? � 5 GeV
the (parton level) z distribution is almost flat, while the �
distribution is almost purely �1
 cos2�. In contrast to
this, at q? � 2 GeV the z distribution is comparable with
�z2�1
 z�2 while the � distribution is flat.

To avoid misunderstanding, we repeat that all calcu-
lations in this paper are done for the fixed value �h �qqqi �
50 MeV and one particular model [16] of the generalized
gluon distribution. The related uncertainties are not in-
cluded. In fact, coherent photoproduction of dijets may
present the best opportunity to constrain both of them.

To conclude, we summarize our main points. In this
Letter we argue that studies of exclusive photoproduc-
tion of light quark dijets with large transverse momenta
can yield important information on the photon structure
at small distances. Our main result is that the nonpertur-
bative CO contribution is large in the regionof intermedi-
ate q? � 2–4 GeV and can be clearly separated from the
perturbative contribution by a different z and � depen-
dence. Observation of the CO contribution would be the
first clear evidence for the chirality violation in hard
processes and also provide the first direct measurement
of the magnetic susceptibility of the quark condensate. On
the other hand, the dijet cross section for large q? can
serve to constrain the generalized gluon distribution.
172001-4
On the theoretical side, we deviate from previous stud-
ies of the dijet production by consistently applying the
collinear factorization in terms of generalized parton
distributions. For the nonperturbative CO contribu-
tions the collinear factorization is, strictly speaking,
broken. However, the sensitivity to the IR cutoff is rela-
tively weak and can formally be eliminated by taking
into account Sudakov-type corrections in the modified
collinear factorization framework. We think that this
technique is potentially more accurate and the results
can be improved systematically by the calculations of
higher-order corrections. In particular, the complete
NLO calculation of the perturbative CE contribution
would be very welcome because of cancellations that
are discussed in the text.
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