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We predict a dynamical classical superfluid-insulator transition in a Bose-Einstein condensate
trapped in an optical and a magnetic potential. In the tight-binding limit, this system realizes an
array of weakly coupled condensates driven by an external harmonic field. For small displacements of
the parabolic trap about the equilibrium position, the condensates coherently oscillate in the array. For
large displacements, the condensates remain localized on the side of the harmonic trap with a
randomization of the relative phases. The superfluid-insulator transition is due to a discrete modula-
tional instability, occurring when the condensate center of mass velocity is larger than a critical value.
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The recent experimental investigations of the dynami-
cal properties of a Bose-Einstein condensate (BEC)
trapped in optical potentials [1-4] have led to a rapidly
growing interest in this topic [5—10]. The spatial and tem-
poral coherence of matter waves emitted at different
heights of the gravitational field has been proven in [1],
after loading a condensate in a vertical optical trap. Num-
ber squeezed (nonclassical) states have been realized in
[2]. In [3], Bloch oscillations and interband transitions in
an accelerating lattice have been observed. In [4], the
optical potential was superimposed on a harmonic mag-
netic trap, realizing a chain of weakly coupled conden-
sates (i.e., a Josephson junction array) driven by an
external parabolic field. For small initial displacements,
the condensate center of mass oscillated symmetrically
with the relative phases among adjacent sites locked
together.

Here we demonstrate that for large displacements,
when the velocity of the center of mass reaches a critical
value (proportional to the tunneling rate between adjacent
sites), the BEC abruptly stops on the side of the harmonic
trap (i.e., without reaching its center). We define an order
parameter for the system, and show that this dynamical
transition from a “‘superfluid” to an “insulator’ regime is
associated with a randomization of the relative phases
among different wells while the coherence of each indi-
vidual condensate in the array is preserved. As we will
discuss below, this transition has a classical (mean-field
or Gross-Pitaevskii) nature, and it is different (but with
some analogies) from the quantum superfluid-insulator
(Mott) transition caused by the number squeezing of the
quantum states in each well [9]. It also differs from the
Landau dissipation mechanism, occurring in (quasi)ho-
mogeneous systems when the velocity of the condensate is
larger than the sound speed [6]. Rather, the classical
superfluid-insulator transition (CSIT) is driven by a mod-
ulational instability (MI) that causes an exponential
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growth of small perturbations of a carrier wave, as a
result of the interplay between dispersion and nonlinear-
ity. The MI is a general feature of discrete as well as
continuum nonlinear wave equations [11]. One of the
early contexts in which its significance was appreciated
was the linear stability analysis of deep water waves. It
was only much later recognized that the conditions for
MI would be significantly modified for discrete settings
relevant to, for instance, the local denaturation of DNA
[12] or coupled arrays of optical waveguides [13]. In the
latter case, the relevant model is the discrete nonlinear
Schrodinger equation (DNLS), and its MI conditions
were discussed in [14]. In this Letter we propose an
experiment to observe a superfluid-insulator mean-field
dynamical transition (as a consequence of the MI), with
weakly coupled Bose-Einstein condensates driven by an
external harmonic field.

The BEC dynamics is governed by the Gross-
Pitaevskii equation (GPE):
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where go = *7-¢, a is the s-wave scattering length, and m
is the atomic mass. The condensate wave function ®(7, 1)
is normalized to the total number of condensate atoms
Nr, and we consider a repulsive interatomic interaction
(a > 0). The external potential V,,, is given by the sum of
the harmonic confining potential Vy = % [wix*+
w*(y* + z%)] and the optical potential V, = V| cos?(kx).
The valleys of the potential are separated by a “lattice
spacing” of A/2, with A = 27r/k. We consider a chemical
potential u < V|, and the transverse degrees of freedom
to be frozen by a tight magnetic confinement, so as to
justify the study of the system in an effective one-
dimensional geometry.
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In the tight-binding approximation ®(7 ) =
VN7, 4, ()¢, (F), with ¢; the wave function of the
condensate in the jth site of the array, weakly coupled
in the barrier region with the wave functions ;. of the
condensates in the neighbor sites. It is then possible to
map the GPE onto the DNLS [7]:

s

Jt - _K(wn—l + ¢n+1) + (En + Ullﬁnlz)(ﬁn

2

with K== [dil}; (Vd, V1) + b Vexdns1]
proportional to the microscopic tunneling rate be-
tween adjacent sites, U = goNy [ dr¢} and €, =

[dHE (V) + Veud?] = Qn2, with Q = Lmw?(2)2.

The DNLS Hamiltonian is
s £ U
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with iy, ¢, canonically conjugate variables. Both FH
and the norm Y, |1, |> = 1 are integrals of the motion.
Let us consider, first, the case €, = 0 (which corre-
sponds to neglecting the effect of the harmonic trap). Sta-
tionary solutions of Eq. (2) are plane waves =
yoexplilkn —vr)], of frequency v=—2Kcos(k)+
Uli|?. The stability analysis of such states can be car-
ried out by perturbing the carrier wave with small am-
plitude phonons: ¢, = (i, + ue'd" + v*e~14")e!*n =71 The
DNLS excitation spectrum (for €, =0) is then given by

w-+ = 2K sin(k) sin(q) *+ 2\/41(2 cos?(k) sin“(z >+2KUI;.//0|2 cos(k) sin2<g )

The carrier wave becomes modulationally unstable when
the eigenfrequency w in Eq. (4) becomes imaginary:

Ulipo|> > —2K cos(k) sin*(g/2), 5)

namely, when cos(k) < 0. Therefore, if the interatomic
interaction is repulsive (U > 0), the system suffers an
exponential growth of perturbations when 7/2 <k <
37r/2. This result will remain valid in the case of non-
homogeneous traveling wave packets driven by external
fields, when their width is much larger than the wave
length associated with the collective motion. This con-
clusion can be further understood in the light of the
collective coordinate equations of motion developed in
[7]. Generally speaking, the mapping of the GPE into the
DNLS allows for the study of solitons and localized
excitations as well as dynamical instabilities in the
framework of the lattice theory [11]. We note, however,
that the MI is a general feature of the GPE with a periodic
external potential, and not necessarily in the tight-bind-
ing limit. In the perturbative limit, u >> V|, and in the
absence of external driving fields (i.e., with V;; = 0), the
MI has been studied in [6,8] [of course, in this limit the
MI condition differs from Eq. (5)].

The effect of the exponential growth of phonon modes
of arbitrary momenta in the DNLS leads to an effective
dephasing among different sites of the lattice. Indeed, the
phases of each condensate enter into a “‘running regime,”
with an angular velocity different from site to site and
proportional to the local (on-site) effective chemical
potential. The complete delocalization in momentum
space leads to a strong localization in real space, and
hence to the appearance of localized structures of large
amplitude (see Fig. 1). This localization has also been at-
tributed (in the absence of any external potential €, = 0)
to the presence of the so-called Peierls-Nabarro barrier
[15], which pins such large amplitude solutions [16], not
allowing them to propagate. The excess kinetic energy is
partially stored to high-frequency internal “‘ac’ oscilla-
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tions among adjacent wells (see also [17]), and partially
converted to wakes of small amplitude extended wave
radiation [15,18].

The CSIT can be observed experimentally by condens-
ing, first, the atomic gas in both the magnetic and the
optical traps, and, then, instantaneously displacing the
magnetic field from its initial position. For small dis-
placements, in line with the findings of [4], the system
coherently oscillates about the center of the potential. If
we rewrite ¢; = \/n“je"‘i’f, this implies that the phase
difference between sites is given by ¢ ;. (1) — ¢;(1) =
A¢(t). The center of mass ¢ =3 ;jn; and the phase
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FIG. 1 (color). The density calculated at different times 0, 20,
40 ms (from the right of each figure to the left) as a function of
the position, with initial displacements &(0) = 50120 sites,
which are, respectively, below and above the critical value
& = 84 (7). The GPE [(c),(d)] and the DNLS [(a),(b)] wave
functions normalized to 1 are compared. (a),(c) £(0) = 50
sites; (b),(d) £(0) = 120 sites. The external parabolic potential,
which drives the oscillations, is centered at x = 0.
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difference A ¢ will then satisfy [4]

d . d .
hag(t) = 2K sinA ¢ (1), ﬁEAd)(t) = —20&().

(6)

Equations (6) have the usual form of the Josephson equa-
tions [19] and indicate that the overall array of bosonic
Josephson junctions behaves as a single Josephson junc-
tion, whose critical current is 2KN;/hi. The collective
coherence was experimentally demonstrated in [4] by
the interference pattern obtained upon releasing the con-
densates from the optical and magnetic traps.

To monitor the dynamical transition of interest, we
define (k) = 3, k|, |> = A, with i, the Fourier trans-
form of the condensate wave function. In the coherent,
small amplitude oscillations regime, the quasimomentum
(k) exhibits regular oscillations (see Fig. 2). However, for
(k) = /2, the system becomes modulationally unstable
and localization ensues. The critical initial displacement
& can therefore be obtained from Egs. (6) with A¢ =

/2. In lattice units,
2K
fcr = ﬁ (7)

In Fig. 2 we plot (k) vs time for three initial displace-
ments. When &(z = 0) is smaller than &, the average
momentum (k) oscillates in accordance with Egq. (6).
Note that for £(r = 0) = 80 the system approaches very
close to the instability line. When the initial displacement
is larger than the critical value, (k) abruptly drops as soon
as it crosses the critical point. This is accompanied by the
sudden arresting of the BEC center of mass (cf. Fig. 1) and
by a collective dephasing (cf. Fig. 3). The key experimen-
tal signature would be the disappearance of the interfer-
ence fringes after the expansion of the BEC, while the
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FIG. 2. The quasimomentum (k) vs time for three different
initial displacements: 40, 80, and 90 sites. When (k) reaches
a/2 [i.e., for an initial displacement greater than &, =~ 84
calculated with Eq. (7)], the system becomes modulationally
unstable.
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center of mass of the resulting cloud will be resting on the
side of the trap’s center.

The values of the parameters in DNLS are V) = 5Ej
with A = 795 nm and the recoil energy Er = K Ny =

2mA?’

50000, K = 5.5 X 1072Eg, and Q = 1.5 X 107°Ey: the
critical displacement from Eq. (7) is &, = 84 sites, in
good agreement with our numerical findings (cf. Figs. 2
and 3). The loss of coherence is highlighted in Fig. 3,
where we plot the temporal evolution of the modulus
squared of an effective complex order parameter measur-
ing the overall coherence of the system, defined as

W= g, ®)
J

When the collective oscillations are coherent, the value
of the order parameter is |W(¢)|> = 1 [see the cases &(¢t =
0) = 40,80 in Fig. 3]. On the other hand, a complete
dephasing is characterized by |W¥(¢)|> = 0, and occurs
for £(r = 0) = &, or, equivalently, when (k) = /2 (cf.
Fig. 2). It is worth noting that each of the condensates
remains internally coherent. In Fig. 1, we plot the density
for different times below [1(a) and 1(c)] and above [1(b)
and 1(d)] the critical displacement. The numerical solu-
tions of the DNLS and the GPE are in good agreement.
The motion of the center of mass in the supercritical case
is reported in Fig. 4, where the numerical solutions of the
DNLS and the full one-dimensional GPE (1) are com-
pared. In both cases the system stops at {x) =35 um
(with a slight difference between the DNLS and the
GPE predictions), while the center of the harmonic trap
is located at x = 0 um. From Egs. (6) we can calculate
the critical current, i.e., the maximum allowed velocity
in the coherent transmission of matter waves: by setting
A¢ = /2 we readily see that the critical velocity of the
center of mass, &, is equal to the critical current per
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FIG. 3. The modulus square of the order parameter W defined
in Eq. (8) as a function of time, for three different initial
displacements (40, 80, and 90 sites) and with the same parame-
ters as in Fig. 2. When the quasimomentum (k) reaches /2
(ie., for an initial displacement greater than &), the order
parameter drops to ~0; cf. Fig. 2.
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regions with different symmetries, and it is common in
the literature to study such dynamical transitions in terms
of an order parameter [22], borrowing the language and
concepts of statistical phase transitions. This mapping, in
the specific case of MI, deserves further studies.

The modulational instability (and the consequent
superfluid-insulator transition) studied here can also be
observed with different experimental setups. In fact,
similar MI and pinning results have been obtained in
the case in which the harmonic trap is displaced at a con-
stant speed exceeding a critical value [23]. These results
illustrate the generality and importance of the effects of
the MI mechanism in the motion of Bose-Einstein con-
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FIG. 4. The center of mass vs time for a supercritical initial
displacement of 150 sites. Solid line: Gross-Pitaevskii equation;
dashed line: discrete nonlinear Schrodinger equation. The
(displaced) center of the trap is at x = 0 uwm.

particle I, = 2K /i and in dimensional units is given by

()]

which gives v, = 0.98 um/ms, in agreement with the
DNLS numerical result, and close to the numerical GPE
value v, = 1.18 um/ms.

We can conclude from the above that the effect of the
Ml in 1D is to dephase the system. In higher dimensions,
the dephasing can be partial, and will damp only the BEC
motion. Yet, its onset will still be given by Eq. (9). The
CSIT regards a classical field (the solution of the GPE),
and it is qualitatively different from the quantum Mott
insulator-superfluid transition in mesoscopic Josephson
junction chains, which is driven by the competition be-
tween zero-point quantum phase fluctuations and the
Josephson coupling energy. Yet, it is possible to draw an
analogy. In the former CSIT case, the insulator regime is
associated with a vanishing temporal correlation among
the phases of each site, each phase still being meaningful
in the GPE sense. The quantum transition is also driven
by a loss of phase correlations induced by the localization
of atoms in each site, which, however, arises from the
noncommuting nature of the number-phase observables.
Clearly, such quantum fluctuations cannot be captured
within the GPE framework. Also, the latter transition is
reversible (i.e., long-range phase coherence is restored
upon the adiabatic increase of the tunnel coupling), while
the former is not [20]. A recent experimental work [21]
has illustrated the existence (and reversibility) of the
quantum phase transition, rendering the experimental
verification of the classical dynamic transition suggested
herein a natural next step for experimental studies. In
conclusion, we notice that the MI can be studied in terms
of one (or several) bifurcation points in an effective sta-
tionary Hamiltonian. Such bifurcation points separate
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densates and underscore its potential in inducing local-
ization and dephasing of such coherent structures.

Note added—Experimental evidences of the dynami-
cal transition predicted in this Letter have been found by
Kasevich et al. [20] and by Cataliotti et al. [24].
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