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We discuss the relations between the violation of the Clauser-Horne-Shimony-Holt (CHSH) Bell
inequality for systems of two qubits on the one side and entanglement of formation, local filtering
operations, and the entropy and purity on the other. We calculate the extremal Bell violations for a given
amount of entanglement of formation and characterize the respective states, which turn out to have
extremal properties also with respect to the entropy, purity, and several entanglement monotones. The
optimal local filtering operations leading to the maximal Bell violation for a given state are provided,
and the special role of the resulting Bell diagonal states in the context of Bell inequalities is discussed.
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Introduction—Entanglement has always been a key
issue in the ongoing debate about the foundations and
interpretation of quantum mechanics since Einstein,
Podolsky, and Rosen (EPR) published their famous ge-
danken experiment in 1935 [1]. For a long time discus-
sions about entanglement were purely metatheoretical.
However, this appeal was changed dramatically in 1964
by John Bell’s [2] observation that the EPR dilemma
could be formulated in the form of assumptions naturally
leading to a falsifiable prediction. The experimental fact
that these Bell inequalities can indeed be violated [3] has
not only ruled out a single theory, but the very way
theories had been formulated for quite a long time.
Whereas until 1989 entanglement was widely believed
to be equivalent to the violation of a Bell inequality, it
turned out that such a violation is neither necessary for
mixed entangled states [4] nor a good measure for the
amount of entanglement [5,6]. It was, in particular, shown
by Gisin [6] that some states initially satisfying Bell’s
inequalities lead to a violation after certain local selective
operations. Hence, these local filtering operations can on
an average increase the degree of violation while decreas-
ing the amount of entanglement.

Although general structural knowledge about entan-
glement [7] on the one side and Bell’s inequalities [8] on
the other has increased dramatically in the last few years,
our knowledge about their relation is still mainly re-
stricted to the simple fact that states violating a Bell
inequality have to be entangled. And although the quan-
titative relations have never been investigated in detail, it
is quite often suggested that a large Bell violation implies
the presence of a large amount of entanglement and vice
versa.

This Letter is devoted to settling the relationship be-
tween entanglement, measured in terms of the concur-
rence, the Bell violations, and their behavior under local
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operations on single copies for the case of two qubit
systems.

To fix ideas we will start by recalling some of the basic
definitions and properties. Throughout this Letter we will
consider systems of two qubits for which we can explic-
itly calculate the amount of entanglement, in terms of the
entanglement of formation [9], as well as the maximal
violation of the Bell inequality in its Clauser-Horne-
Shimony-Holt (CHSH) form [10,11].

The concept of entanglement of formation (EOF) is
related to the amount of entanglement needed to prepare
the state p, and it was shown by Wootters [9] that

=2
EOF(p) — h(H;C > 0

where h(x) = —xlogx — (1 —x)1g(1 —x) and the concur-
rence C=max[0, /] —>* ,/I;] with {I;} being the de-
creasingly ordered eigenvalues of p(o,®0,)p’ (0, ® 0)
with transposition in any product basis. In order to cir-
cumvent lengthy logarithmic expressions, we will in the
following use the concurrence rather than EOE which is,
in fact, a convex and monotone function with respect to
C. The concurrence is zero for an unentangled state and
one for the maximally entangled state.

The CHSH inequality formulated for two qubit sys-
tems states that within any local classical model the
expectation value Tr(pB) of the Bell operator

3

B = %Uzl[a,.(cj +d;) + bi(c;—d)lo;®a), (2
where (a, l;, ¢, Zl) are real unit vectors and o;, being the
Pauli matrices, has to be bounded by one. Its violation is a
measure of how strong nonclassical properties of the state

manifest themselves in correlation experiments.
In the sequel we will often represent the two qubit state
in terms of the 4 X 4 matrix R;; = Tr(po; ® o) (with o
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being the identity) and the 3 X 3 block R;; = Tr(po; ®
o), where k, 1 = 1,2,3. It is important to note that the
latter can be diagonalized just by changing the local
bases, which will affect neither the entanglement nor
the maximal Bell violation.

Entanglement of formation versus violation of the
CHSH inequality.—In [11] the Horodecki family showed
that the maximal violation of the CHSH inequality for a
given state can be calculated by considering the 3 X 3
matrix Ry = Tr(po, ® o). We will give an alternative
derivation of this result in a way that will be very useful in
the sequel.

Lemma 1: (Horodecki [11]) Given the decreasingly
ordered singular values {s;} of R, the maximal violation

B = maxg Tr(pB) is given by +/s7 + 5.
Proof: Translated into the R picture, calculating the

maximal expectation value of B under the constraint that
(a, b, ¢, d) are real unit vectors amounts to maximizing

Tr(RX) with
- 1/1 1 a’
bl NE) e

It is an easy exercise to show that X is a real 3 X 3 matrix,
subjected to only the constraints that it be of rank 2 and
that Tr(X”X) = 1. Standard linear algebra then dictates
that Tr(RX) is maximized iff X is chosen to be propor-
tional to the best rank 2 least-squares approximation of
the matrix R. In the Hilbert space basis where R is
diagonal [R = diag(s;, 55, 53)], X is therefore given by

X=(¢

X = diag(sy, s, 0)/4/s7 + 53, which immediately leads
to B =4/s? + 5.

In the following we will derive the extremal violations
for a given amount of entanglement plotted in Fig. 1.

Theorem 1: The maximal violation of the CHSH in-
equality for given concurrence Cis 3 = V1 + C%.

Proof: As shown by Wootters [9], it is possible to
decompose a mixed state of two qubits p =
> piliX;| into a convex sum of pure states, all with
the concurrence equal to the concurrence of the mixed
state. Since the extremal violation is, moreover, a convex
function, i.e., maxg Tr(pB) = Y ; p, maxg(¢;|Bly;), it is
sufficient to have a look at pure states, which can always
be written in their Schmidt form as [¢) = A,.|00) +
A_|11) with AL = (/1 + C*=+/1 —C)/2. The corre-
sponding R matrix is diagonal with singular values
(1, C, C) leading to B8 = /1 + C.

It is interesting to note that there also exist mixed states
of rank 2 for which the violation is as strong as for pure
states. These are, up to local unitary operations, all of the
form (dots should be read as zeros):

I 11— a C
p= 2 --- C 1+ « S
with C being the concurrence and a a free real parameter
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FIG. 1. The region of possible maximal Bell violation for
given concurrence. The dark grey region corresponds to Bell
diagonal states and the three curves represent pure states (solid
curve), Werner states (dashed curve), and maximally entangled
mixed states (dotted curve).

constrained by |a| = +/1 — C?, where equality leads to
pure states and Bell diagonal states (see section below)
are obtained for a = 0.

Theorem 2: The minimal violation of the CHSH
inequality for given concurrence C is given by
B = max[1, v2C].

The proof is quite technical and may be skipped by
readers not interested in technical details.

Proof: We will use similar techniques as used in [12—
14], where it was shown that surfaces of constant con-
currence can be generated by transforming R+~ R'=
L,RLY by left and right multiplication with proper ortho-
chronous Lorentz transformations, imposing the con-
straint that the (0,0) element of R (representing the
trace of p) does not change under these transformations.
They leave the Lorentz singular values [14] invariant,
and the concurrence is a function of these four parame-
ters only.

Using the variational characterization used in
Lemma 1, the first step consists of varying the Lorentz
transformations L, L,, and the 3 X 3 rank 2 matrix X
[with constraint Tr(X7X) = 1], and imposing that these
variations be stationary (i.e., we have an extremum or
saddle). The object function is given by

Tr[LJQL{(S 2)} (5)

under the constraints Tr(X”X) = 1 and

1
Tr LRLE| L || =1 ©

The orthogonal degrees of freedom of X can be absorbed
into L, L,, such as to yield a diagonal X of rank 2: X =
diag(q, r, 0) with ¢> + r*> = 1. Variation of the Lorentz
transformations yields the extremal conditions
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Tr[Glﬁ’(g ;)} = Tr[R’Gz(g ;)} =0 (7

for all possible generators G, G, of the Lorentz group and
A being a Lagrange parameter. The generators are all of

the form
0 v

with o € R? and A a real and antisymmetric 3 X 3 block.
A detailed discussion of the case A # 0 shows that this
leads to the maximal violation, which we have already
obtained in Theorem 1 using a simpler argument. The
minimal value of the Bell violation turns out to corre-
spond to the case where A = 0 and yields the condition
that R’ is of form
1 PPN [N a
D/ —
R=|0 T ©)
b . e . e z
The extremal violation of the Bell inequality is then
directly found by varying the remaining diagonal ele-
ments of X, leading to a violation given by 1/x*> + y?. The
concurrence of the extremal state can be calculated ex-
plicitly, and is given by

C =imax[ 0, |x — y| — \/(1 — 22— (a—b)* |x+yl
_ \/(1 + 22— (a+ b)) (10)

The constraints that R corresponds to a (positive) state
are expressed by the inequalities

—-1=z=1, (1
(1+2?—(a+b)P?=(x—y? (12)
(1—2)?%—(a—b)?=(x+y> (13)

Applying these to the expression of the concurrence, this
immediately leads to the sharp inequality C =

min(|x|, [y|). The Bell violation, given by 8 = /x> + y?,
will then be minimal for given concurrence if |x| = |[yl,
leading to the final result 8 = +/2C. To complete the
proof, we still have to check if there indeed exists a state
with the properties that x =y, (1 + z)> = (a + b)?, (1 —
?=(a=b?=@x+y?% —1=z=1, and [z = |x|.
Choosing, for example, a=b=(1+7)/2 and z =
—|x| indeed leads to a possible result, which is a convex
combination of a maximally entangled and an orthogonal
separable pure state. Note that all parameters fulfilling
the above constraints lead to states with the same mini-
mal possible amount of 8 for given concurrence. |

The states minimizing the Bell violation for given
entanglement of formation are all rank deficient and bel-
ong to the class of maximally entangled mixed states in-
troduced by Ishizaka, Verstraete, and co-workers [15-17].
These states do have a remarkable property: their entan-
glement of formation, negativity [18], and relative entropy
of entanglement [19] cannot be increased by any global
unitary transformation [17] (and thus under any trans-
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formation preserving the spectrum). For given entangle-
ment their entropy is the largest and their purity
[measured in terms of Tr(p?)] is the smallest possible
one. In [12] it was shown that these states also minimize
the negativity and the relative entropy of entanglement for
a fixed amount of entanglement of formation, which is
fully compatible with the result about the minimal viola-
tion of the Bell inequality.

Optimal filtering.—Local filtering operations, i.e., se-
lective measurements, on single copies are of particular
importance whenever it is difficult or even impossible to
operate jointly on several copies — such as in single pho-
ton experiments. Gisin [6] noted that there exist mixed
states that do not violate any CHSH inequality but can
violate them after a filtering operation is applied to them.
Therefore the question is raised: what local filtering op-
eration has to be applied to a given state such as to yield a
new state that violates the CHSH inequality maximally?

Theorem 3: Given a single copy of a state p, then the
optimal local filtering operations yielding a state with
maximal possible violation of the CHSH inequality are
the unique stochastically reversible filtering operations
bringing the state into Bell diagonal form.

Proof: The proof is completely similar to the proof of
Theorem 2, so we will repeat only the major steps. In the
R picture, filtering operations correspond to left and right
multiplication with Lorentz transformations, followed by
renormalization [14]. The function, which we have to
maximize with respect to L;, L,, and X = diag(q, r, 0)
in order to obtain the maximal Bell violation, therefore

becomes
57T
Tr[ L,NRL2 (O 0)} (14)
(LiRLY)o\O X

with the constraint ¢g*> + r> = 1 and the normalization
factor (L, RLY ). Variation leads to the condition

Tr|:G1R’< OB 2>:| = Tr[R/G2< OB 2>:| = 0,
where again this has to hold for arbitrary Gy, G,, and
where 3 is equal to Eq. (14), i.e., the Bell expectation
value for given ¢, r, L, L,. If 8 > 1 (i.e., Bell violation),
it follows that 8 cannot be equal to |¢| or ||, and the form
of the generators in Eq. (8) implies that the above equa-
tions can be satisfied only iff R’ is diagonal corresponding
to a Bell diagonal state (see next section). In [13] it was
shown that for each mixed state there exist local filtering
operations bringing the remaining state into a unique Bell
diagonal form, such that we have proven that these are the
filtering operations that maximize the Bell violation. For
a more detailed discussion of these filtering operations we
refer to Ref. [13]. |

This result was expected as it was shown in [13] that
exactly the same filtering operations maximize the en-
tanglement of formation and the negativity.

Theorem 3 implies that there exists a large number of
mixed entangled states that do not violate any CHSH
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inequality, even after all possible local filtering opera-
tions: every state whose Bell diagonal normal form does
not violate the CHSH inequalities.

In the following section we will discuss in more detail
the Bell diagonal states, for which Theorem 3 shows that
the Bell violation cannot be increased by any local filter-
ing operation.

The role of Bell diagonal states.—We call a state Bell
diagonal if there is a local choice of bases such that it can
be written as a convex combination of the four maximally
entangled Bell states [20], which means that Ris diagonal
in that basis. The diagonal elements of R then depend only
on the eigenvalues A; = -+ = A4 of the Bell diagonal
state [14], and it is thus straightforward to show that the
maximal Bell violation is

B=Va/h— AP+ — A (15)

Since the concurrence is given by C = max[0,2A; — 1]
the region of possible violations is in this case

20+ 1)/3=8=V1+C (16)
where the lower bound is sharp for Werner states [4] and
the upper bound is attained for rank 2 Bell diagonal states
and is equal to the relation for pure states.

The fact that the Bell operator B in Eq. (2) is itself Bell
diagonal due to Tr(Bo; ® gy) = Tr(Boy ® o;) = 0 al-
ready suggests that Bell diagonal states play a special
role in the context of violations of the CHSH inequality.
And, in fact, in addition to being the optimal outcomes of
local filtering operations, they exhibit another special
property.

Theorem 4: For any given spectrum of the density
matrix the respective Bell diagonal state p maximizes
the Bell violation, i.e., YU € U4) : B(p) = B(UpU*).

Proof: First note that as we have to calculate a su-
premum over all unitary rotations of the state p, we can
without loss of generality assume that the initial state
commutes with the Bell operator B. The proof of the
theorem is then based on the fact that if u;; are the matrix
elements of a unitary matrix, then |u;|> is a doubly
stochastic matrix; i.e., a convex combination of permuta-
tions 7. If {A;} and {b;} are the decreasingly ordered
eigenvalues of p and B, respectively, then

Tr(UpU*B) = > Abluyl> = p, > Aibyg
ik T i

= > Aib; = Tr(pB). a7

This immediately implies that if we fix any spectral
property of the state, such as the purity Tr(p?) or the en-
tropy —Tr(plogp), the maximal violation of the CHSH
inequality will always be attained for Bell diagonal
states.

Conclusion.—We derived the range of Bell violations
for a given amount of entanglement (measured in terms of
the concurrence) and discussed the extremal states, which
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turned out to have extremal properties also with respect
to several entanglement monotones, the entropy, and pu-
rity. These results quantitatively show to what extent it is
reasonable to identify a large Bell violation with a large
amount of entanglement.

It was conjectured by Munro et al. [21] that for given
concurrence the Bell violation increases with the purity of
the state. Although this is not true in general [which can
already be seen from Eq. (15)], our results show that this
is indeed true for the extremal cases.

Moreover, we proved that the local single copy filtering
operations which maximize the concurrence and other
entanglement monotones also maximize the Bell viola-
tion and lead to Bell diagonal states, which in turn are
optimal with respect to global unitary operations as well.
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