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Dissipation of the Excitation Wave Fronts
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An excitation wave in cardiac tissue will fail to propagate if the transmembrane voltage at its front
rises too slowly and does not excite the tissue ahead of it. Then the sharp voltage profile of the front will
dissipate, and the subsequent spread of voltage will be purely diffusive. This mechanism is impossible in
FitzHugh-Nagumo type systems. Here a simplified mathematical model for this mechanism is
suggested. The model has exact traveling front solutions, and gives conditions for the front dissipation.
In particular, a front will dissipate if it is not allowed to propagate faster than a certain nonzero speed.
This critical speed depends only on the properties of the fast sodium current.
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Introduction.—Fifty years ago, Hodgkin and Huxley
proposed a mathematical model of the electric action of
the giant squid axon [1]. It spawned a large family of
models describing other biophysical phenomena, e.g., ex-
citability of heart muscle. These models are rather com-
plicated [see (4)] and are mostly treated numerically.

FitzHugh [2] and Nagumo et al [3] suggested a sim-
plified analog of the Hodgkin and Huxley (HH) equa-
tions:

9,E = 02E + €x(E — E3/3 — v), |
v =€,(E+ B— yv) M
where E corresponds to the transmembrane voltage [4]
and v represents all other, slow variables. FitzHugh has
shown that an appropriate two-dimensional projection of
the “phase portrait™ of the HH model looks “similar” to
that of (1), and Nagumo et al. have demonstrated that it
describes propagating pulses similar to those in HH. This
model is much simpler than the HH-type systems, and
allows a great deal of analytical and qualitative study.

Throughout these 40 years, the FitzHugh-Nagumo
(FHN) system and its modifications served well as simple
but reasonable models of excitation propagation in nerve,
heart muscle, and other biological excitable media.

In this paper, we discuss a phenomenon in biophysi-
cally detailed models, which cannot be adequately repro-
duced in any FHN-type system. This is dissipation of the
excitation wave fronts, a specific mechanism of propaga-
tion block when the sharp gradient of the transmembrane
voltage at the wave front smears out and the spread of
voltage becomes diffusive, as the main excitation current
gets inactivated. This phenomenon, although seen by
physiologists and researchers working with detailed
models, has not been identified so far as deserving special
attention and is understandable in terms of simplified
models. Understanding the mechanisms of propagation
blocks in heart tissue is of enormous practical impor-
tance, as it is thought to be a major factor of cardiac
arrhythmias (see [5] as an example of a recent study).
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Two different mechanisms of propagation block—A
typical scenario of propagation block in heart is that an
excitation propagates where the tissue has not fully re-
covered after the previous wave, and a recovery wave
moves before the new excitation wave. If the recovery
wave is slower than the excitation wave, the latter runs
into more and more unfavorable conditions and may
eventually fail to propagate at all. This happens differ-
ently in realistic models and in FHN-type caricatures.
Figure 1 illustrates this using an ultimate idealization of
the excitability completely but temporarily suppressed in
a part of the medium. The illustrations are for two mod-
els, the detailed model of human atrial tissue by
Courtemanche et al. [7] (CRN) and for the FHN system
(1). In the CRN model, when the propagation stops, the
wave fronts dissipate. When the conditions for propaga-
tion are restored, the excitation wave does not resume, as
the sharp increase in the voltage necessary to trigger such

CRN FHN

(x,t) € B,

07
- €EE — -
standard otherwise. & { 3, otherwise.

i = { 0, (z,t) € B,
FIG. 1. Temporary local block of propagation: excitability is
suppressed for (x,7) € B = (0,x;,) X (0,¢,) (shown by the
white dots) [6]. Here and below, solutions shown as density
plots, where black is the smallest and white is the largest value
of E within the solution. In CRN, time range 80 ms, space range
50 s.u. [4], all the kinetic parameters as in [7]. In FHN, time
range 50, space range 50, 8 = 0.75, y = 0.5, €, = 0.03.
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a wave is not present. Subsequent spread of the voltage is
purely diffusive. In the FHN system, the high voltage at
the front itself is enough to excite new cells if other
conditions are right again, so the excitation front can
propagate with arbitrarily slow speed or even stop, with-
out dissipation. When propagation conditions are restored,
the excitation wave resumes the propagation, even though
the voltage profile in the unexcitable region has been
smeared out.

The FHN wave will not resume propagating only if the
block lasts longer than the action potential, so the back of
the wave reaches the block site. In contrast, the CRN wave
loses the ability to propagate within milliseconds, long
before the end of the action potential.

Excitation fronts in FHN-type systems do not dissi-
pate—If €, < €g, system (1) belongs to a class of
systems

0E=03E+ f(Ev), odv=¢eg(Ev), 0<e<],

2

(v € R™, m = 1), for which the asymptotic theory devel-
oped in the 1970s and 1980s (see, e.g., [8—11]) can be
applied. In a relevant region of v, function f(E, v) is
assumed to have three simple roots in E, E_(v) (recovery)
<E.(v) (threshold) <E, (v) (excitation), where recovery
and excitation are stable, dzf(E+(v),v) <0, and the
threshold is unstable, d5f(E.(v), v) > 0. Propagation of
fronts and backs of excitation waves in the limit € — +0
is described by trigger waves in the first of the Egs. (2)
with v = const between E_(v) and E, (v) with a speed
which is a function of v, ¢ = c¢(v). The sign of c¢(v)
coincides with the sign of fﬁﬁ; f(E,v)dE and thus
may change as v changes, i.e., a wave front may stop
and reverse to become a wave back. The motion of the
wave front/wave back on the large scale is described by an
ordinary differential equation

dX/dt = —c(v(X, 1)) = —C(X, 1). 3)

In any case, as long as the excitability stays, the sharp
structure of the front is preserved; ie., it does not
dissipate.

Constructing the simplified model of the excitation
front—The Hodgkin-Huxley—type models are fairly
similar in the part that interests us; for definiteness, we
refer to the original model [1],

9,E = 93E + gnu(Ena — E)m*h + gg(Ex — E)n*
+ g(E; — E),
9,m = [m(E) — m]/7,(E),
3:h = [h(E) — hl/7,(E),
dmn =[n(E) — n]/7,(E), 4)
where E is the transmembrane voltage [4], gn,k; are

maximal conductivities per membrane capacitance of
Na, K, and leakage currents, Ey,x; are their reversal
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potentials, m, h and n are fractions of open channel gates,
7, h, 7 are their equilibria, and Tmnn are their time
scales.

On the front, E is rapidly raised by two large currents,
the Na current and the intercellular current described by
the diffusion term. Elsewhere, E is changed only by the
smaller currents. To describe the front only, we consider
the limit of large gy,, and disregard all ionic currents but
Na. Thus, only m and & which are responsible for the Na
current remain, while n, as well as many other variables
in more complicated models, become irrelevant.

Values of 7,,(E) at the front are very small compared to
other characteristic time scales of the problem. Thus m is
always close to its quasistationary value m(E). The differ-
ential equation for m is therefore eliminated.

Thus we get a system of two equations,

0,E = 92E + Iy, (EYm3(E)h, 5)

d:h = [h(E) — h]/7)(E),
where Iy, (E) = gna(Ena — E). This system is intended to
describe the propagation of the excitation front (the fast
process) only, leaving all other processes, such as action
potential and recovery (the slow processes), out of the
scope. Compared to the FHN model, this system plays the
same role as the first equation in (2), but here we do not
assume A to be much slower than FE, thus two fast equa-
tions in place of one.

So far we exploited small parameters available in the
model, and (5) can be expected to be in a reasonable
quantitative agreement with the full system. Further sim-
plifications are based on qualitative considerations, and
do not claim to produce quantitative results. We note that
mm(E) and h(E) are steplike functions, taking values either
close to 0 or close to 1 (see Fig. 2). Thus we replace them
with

m(E) = 0(E — E,) = (E),  h(E) = 0(E, — E),
where 6(a) is the Heaviside step function.

Further, we replace 7,(E) and Iy,(E) by constants as
their dependence on E is not essential here. So, growth of
E stops when & or m close down, not when E reaches Ey,,
and the maximal voltage in a front is usually significantly
lower than Ey, (in CRN, by more than 60 mV).

After scaling E so that £, =0 and E,, = 1, and ¢ so
that Iy, = 1 [4], we finally obtain the system

HH CRN

-20 0 20 40 60 80 100

The simplified model

0 Lo P
100 E, E, 0 20 E, E,

FIG. 2. Dependence of 7°(E) and h(E) for the Hodgkin-
Huxley (HH) (4) [1] and Courtemanche et al (CRN) [7]
detailed models and for the proposed simplified model (5).
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0,E = 92E + 6(E — 1)h, d,h =[0(—E) — h]/T,

(6)

depending on one dimensionless parameter, 7.

Spatially homogeneous equilibria here are not isolated,
but form two continua, (E, h) € (—o0,0) X {1}U
(0, +00) X {0}. This is due to a disregard of the small
ionic currents and the idealization of Na gates as perfect
switches. This means that £ will remain constant (in
reality, slowly vary) as long as the Na channels are
closed [12].

The traveling front solutions.—A front propagating
leftwards with speed c satisfies

cE'=E"+ 6(E — 1)h, ch! =[0(—E) — h]/7,
E(—) = —a <0, E(+o) =w > 1, @)
h(—o0) =1, h(+00) = 0.

We choose the phase of the front so that £(0) = 0, denote
x; >0 the point where E(x;) =1, and require that
E(x) € C" and h(x) € C°, which implies obvious internal
boundary conditions at x = 0 and x = x;.

This problem has a family of solutions depending on
one parameter, the prefront voltage « (see Fig. 3):

—a + ae™ (x = x)),
E(x) = { © — 2T (x = xy),
Mﬂ:{ I (=0, ®
e ¥ (x = 0),

where @ =1+ 7¢*(a + 1), x; = 1In(2:%) and ¢ is an
implicit function of 7 and «,

Tc? ln<(1 @)1+ 7c?) >+ ln<a: 1>= 0. 9

T

Note that here the postfront voltage w depends on 7;
this is different from the FHN-type systems where it
depends only on the right-hand sides of the equation
for E.

Properties of the speed equation.—Equation (9) is
equivalent to the equation of level curves Int = g(B, o)
of the function g(8,0)=In(l1+0o)—1In(l—-B)—
o~ 'InB, where o = 7c%, B=a/(a+ 1), (B, 0) ES =
(0, 1) X (0, +00). It can be seen that (i) For every fixed 3,
dg/do changes sign once as o runs through (0, +00).
(ii) g(B,0) has a local minimum o, = 1.53659...,

FIG. 3. A propagating front solution (8) and (9) (r =8, a =
1, ¢ = 0.444).
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B. = 039423 ..., g, =~ 2.0378..., which is its only
critical point in S. (iii) Function g(3, o) has the following
lower bounds

(B, ) > In[In(1/B)]
g(B, o) >n(1/0),

Using [13], we deduce that for every C > g, the set
g(B, o) = C is a simple closed curve, crossing each line
B = const at most twice, and (8., o) is a global mini-
mum in S. A selection of level curves is shown in Fig. 4.

Thus, forevery 7 > 7, = €% = 7.6740.. ., there exists
a range of prefront voltages 0 < ap,(7)<a<
max (7) < +o00, for each of which there are two propagat-
ing front solutions (8) with different speeds, and all
speeds possible at various prefront voltages span an in-
terval 0 < cpin(7) = ¢ = cpax(7) < +00. Explicit esti-
mates can be obtained in the limit of large 7, e.g.,

g(B, o) >n[1/(1 — B)],
¢(B, o) >Ino, V(B o)ES.

Cmin = €277+ 075632772 + O(r73). (10)

Existence of a minimal propagation speed implies that
the excitation front cannot be stopped or reversed, and is
therefore crucial for the phenomenon of front dissipation.

Some numerical results.—For every admissible pair of
7 and «, except the marginal values of «, Eq. (9) gives
two values of the speed c. Numerical experiment suggests
that the faster fronts are stable, and the slower fronts are
unstable and either dissipate or develop into the faster
solutions (see Fig. 5). This conjecture requires a further
investigation.

Figure 6 shows results of computations of (6) with a
temporary local excitability block as in Fig. 1. As front
propagation is possible if 7 > 7, = 7.674, the block was
simulated by a decrease of 7 below this threshold. The
front dissipated as soon as it reached the blocked region.
When excitability in that region was restored, the front
did not resume but continued to spread diffusively. So, the
new model behaves similarly to the detailed equations
and is different from the FHN model.

Conclusions.—Fronts of excitation waves in realistic
models of cardiac tissues cannot be stopped or reversed.
If they are not allowed to propagate, they dissipate. This
is different from FHN-type caricatures, where fronts can

3

0 0.2 0.4 0.6 0.8

S = N W A~ W
T T T T T

+ . . . =0
0051 15225 3 35

FIG. 4. Prefront voltage vs front speed for a selection of
values of 7 (labels on the curves), in (8, o) coordinates, and
in the original (e, ¢) coordinates. ( e ): exact solution 8 = 0.5,
o=1, 7=28. (*): the minimum of 7: B, = 0.39%4, o, =
1.537, 7. = 7.67.
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o =0.624 o =0.625

FIG. 5. Solutions of (6) with initial conditions (8), for 7 =
10, @ = 1 and o close to the low speed solution of (9). Space
range is 100, and time range is 200. Depending on minute
details, the slow front either dissipates or develops into the
faster front, corresponding to o = 2.955.

slow down indefinitely, or reverse and turn into wave
backs. Local propagation blocks can break excitation
waves and are essential in fibrillation. An established
belief, based on FHN-type models and exemplified by
[5], is that a wave break happens when the wave back
catches up with the wave front and the length of the
excitation wave becomes zero. As we now see, in realistic
models the wavelength is irrelevant, and whether or
not the wave breaks is decided exclusively by events in
its front.

The proposed simplified model (6) captures the main
features of realistic models responsible for the propaga-
tion and dissipation of the excitation fronts. The main
qualitative predictions are the following: (i) Front pa-
rameters are determined by the prefront voltage. (ii) The
range of prefront voltages at which propagation is pos-
sible is bounded from above and from below. (iii) The
range of possible propagations speeds is bounded
from above and from below. The boundedness of speed
from below implies that an excitation front cannot be
stopped or reversed, and is therefore crucial for the front
dissipation.

Model (6) provides exact analytic solution for the front
shape (8) and speed (9), and therefore conditions of front
dissipation can be obtained, e.g., (10). For quantitative
description, model (5) can be used instead [14], perhaps
numerically, with possible exception of qualitative ques-
tions like boundedness of the speed spectrum. These
models can serve as the fast subsystems in an asymptotic
theory of the cardiac excitation waves, which is yet to be
developed and to replace, in applications to cardiology,
the asymptotic theory of FHN-type systems [8—11].

The key process in front dissipation is the closure of
the slow Na gate h. Thus any asymptotic or simplified
model intended to describe front propagation at low speed
or its failure must take dynamics of /4 into account, along
with those of E£. We now see that this is necessary even if
the ratio of characteristic time scales of E and 4 is rather
high, say, around 8.
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T

[ 7T< T, (2,t) € B,
TT18> T+, oOtherwise.

FIG. 6. Temporary local block (B, white dots) of the excita-
tion front in the simplified model (6), as in Fig. 1. Front
propagation did not resume after the excitability has been
restored. Initial conditions (8) with 7 =8, a = 1, ¢ = 0.444.
Time range 1000, space range 300.
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