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ContinuousVariable Quantum Cryptography: Beating the 3 dB Loss Limit
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We demonstrate that secure quantum key distribution systems based on continuous variable
implementations can operate beyond the apparent 3 dB loss limit that is implied by the beam splitting
attack. The loss limit was established for standard minimum uncertainty states such as coherent states.
We show that, by an appropriate postselection mechanism, we can enter a region where Eve’s knowledge
on Alice’s key falls behind the information shared between Alice and Bob, even in the presence of
substantial losses.
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Alice’s and Bob’s data initially differ. In the worst case,
the two-way error correction scheme leaks the complete

beyond 3 dB, because then Eve has access to better signals
than Bob. However, postselection allows unconditionally
The distribution of random keys for cryptographic
purposes can be made secure by using the fundamental
properties of quantum systems such that any interception
of the key information can be detected. This was first
discussed for discrete systems [1], and experimental dem-
onstrations have been carried out using optical sources,
which produce low photon number states [2]. More re-
cently, schemes based on continuous quantum variables
have been proposed [3–6], where the scheme by
Gottesman and Preskill [4] has been proven to be infor-
mation-theoretically secure. Apart from being of funda-
mental interest, these schemes offer certain practical
advantages. However, they all share one major disadvant-
age: currently it is thought that the use of continuous
variable techniques does not allow quantum key distri-
bution (QKD) beyond 50% loss [6]. This severely limits
the applicability of such schemes.

The argument leading to this limit is based on an
optimal cloning approach for optical signals that corre-
sponds to a beam splitting attack on the signals [6]. At the
loss limit, an eavesdropper Eve can replace the lossy
channel by a perfect one with an adapted beam splitter
to mimic the losses. She can then generate a cloned signal
with a fidelity which depends on the beam splitter trans-
mission. In order to extract a secure key out of the
material with the usual privacy amplification tools [7]
and a free choice of the required error correction tech-
nique, including the efficient two-way schemes [8], how-
ever, the mutual information IAB between Alice and Bob
has to exceed the information that either of them shares
with Eve: IAB > maxfIAE; IEBg. This condition arises as
follows: In order to perform privacy amplification [7], one
needs to be able to estimate Eve’s information on the data
shared by Alice and Bob after error correction. Two-way
error correction provides additional information to Eve in
two forms: redundant information to enable error correc-
tion, that are according to Shannon’s theorem at least 1�
IAB bits, and information about the positions of bits where
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information about these error positions to Eve, so that
Eve’s information about Alice’s and Bob’s key now stands
on the same footing and satisfies I0�AB�E � maxfIAE; IEBg.
In the protocol presented below, we actually find equality,
as explained later. Taking this into account, the usual
mechanism of one-way communication schemes applies,
and we find for individual attacks via [7,9,10,11] the
condition IAB > maxfIAE; IEBg. (Following discussions
with Grangier, it should be pointed out that specific
two-way error correction techniques might leak less in-
formation about error positions leading to less demanding
conditions.) Yet, for losses beyond 50%, one finds that the
condition IAB > IAE is violated so that the above standard
methods cannot be used without advanced quantum tech-
nologies such as quantum memories and entanglement
purification which are presently not available. Note that
one may restrict the information flow for error correction
from Bob to Alice or vice versa. In this case, the ‘‘maxi-
mum’’ in the above case may safely replaced by the
‘‘minimum’’ [9,12], but efficient protocols for one-way
error correction close to the Shannon limit for typical
error rates around 5% are still missing up to now.

In this Letter we propose a novel scheme, which oper-
ates beyond the apparent 3 dB limit. In certain situations
it is still possible to create a secure key [7], although
IAB < IAE or even IAB < IBE. For classical correlations the
procedure is known as advantage distillation [10]; upon
closer investigation, this turns out to be a form of post-
selection and requires two-way classical communication.
Gottesman and Lo [13] used this technique to increase
the tolerance against errors in the single-photon BB84
protocol. Postselection is a standard intrinsic procedure
in conventional QKD with weak pulses: if no photon is
detected by Bob, or when Alice and Bob did not measure
in the same basis, the corresponding time slot is ignored
and hence does not contribute to the raw data. Without
this postselection, the condition IAB � maxfIAE; IEBg
could never be reached for any QKD protocol for losses
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secure key exchange in the presence of large losses,
limited basically only by the photodetection process
[14]. The situation becomes more subtle for continuous
variable schemes, since then always a nonvacuum signal
reaches Bob and correlations appear between the data
measured by Bob and that of potential eavesdroppers
via Alice’s state preparation. Thus the postselection has
to be made more conscious, and here we show how to do
this. The selection of favorable data for Alice and Bob has
been previously addressed in the context of implementing
the BB84 protocol with weak coherent pulses in the
presence of a strong phase reference pulse [15]. Our
results demonstrate that continuous variables and weak
coherent pulse schemes are closely linked in the basic
principles.

We consider the following scheme, which is similar to
those proposed by Cerf et al. [5] and Grosshans and
Grangier [6]. Alice sends an ensemble of coherent states
to Bob with a Gaussian distribution of complex ampli-
tudes centered on the vacuum. Bob measures either of two
conjugate quadratures, say, e.g., the in- and out-of-phase
quadratures X and Y, using homodyne detection. The
measurement results x are then given as eigenvalues of
quadrature operator x̂x� � 1

2 �âae
�i� 	 âayei�� with � � 0

or �
2 . Bob will effectively see a Gaussian distribution for

both kinds of quadrature measurements X and Y. Bob
reveals which quadrature he measured in each time inter-
val and estimates whether Alice prepared a coherent state
with a positive or negative displacement in the corre-
sponding quadrature. Alice and Bob can now interpret
positive displacements as logical ‘‘0’’ and negative ones
as logical ‘‘1.’’ For our analysis of the security of this
scheme, we extend this protocol and specify the used
states by additional steps. After Bob’s publication of his
choice of the quadrature, Alice will interpret the state she
sent either as a member of the set fj � �e�i�i; j�ei�ig, if
Bob detected the quadrature X, or fj � i�e�i�i; ji�ei�ig
(� 2 R), if Bob measured the quadrature Y. She now
publishes the values of � and �. In each case, from
Bob’s and Eve’s perspective, this narrows down the num-
ber of possible signals to two, for example, j�ei�i or j �
�e�i�i. Thus, Alice and Bob can build up a secret key as
before when now the encoding reads more specifically:
j�ei�i ! 0, j � �e�i�i ! 1 for X quadrature measure-
ments and ji�ei�i ! 0, j � i�e�i�i ! 1 for Y quadrature
measurements. Other choices of signal sets are possible,
for example, sets with point symmetry, but the choice
above turns out to be favorable.

To investigate the secrecy of the key, the distribution
of Bob’s data conditioned on the choice of Alice can
be accessed using classical communication. For this
purpose, Alice and Bob open up complete signal de-
scriptions and measurement results for some randomly
chosen transmission events. Thus, the statistics of
Bob’s detected results should mirror Alice’s coherent
state preparation with expected Gaussian distribu-
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tions centered according to the complex amplitude dis-
placements.

Eve’s first strategy is thus passive intervention via the
beam splitter attack [6]. Eve’s intervention is indistin-
guishable from loss. In the typical loss model, Alice’s
state is transformed as

j�ei�iBj0iE ! j
����
�

p
�ei�iBj

�������������
1� �

p
�ei�iE (1)

for arbitrary � and �, where � is the transmission effi-
ciency between Alice and Bob. Alice and Bob are none
the wiser, but Eve ends up with all the lost signal. It was
shown [6] that, provided the loss is less than 50%, it is
still possible for Alice and Bob to distill a secure key
when faced with such an attack.We will now show that, in
fact, 50% loss is not an ultimate limit for secure QKD.

We wish to find a way by which Alice and Bob can
postselect a subset of the data for which they have a high
mutual information, but for which Eve and Alice do not.
Alice and Bob can base their selection procedure on the
parameter � and � characterizing the state preparation
and Bob’s measurement results x. The overall mutual
information of Alice and Bob can then be subdivided
into different effective information channels character-
ized by the parameters ��; �; x�, such that

ItotAB �
Z
�;�;x

dxd�d�p��; �; x�IAB��; �; x�: (2)

Similarly, the overall information Alice shares with Eve
can be composed from all single events.

Note that the separable nature of the state of Eq. (1)
ensures that there is no correlation between Bob’s and
Eve’s quantum uncertainties. Thus, Eve’s mutual infor-
mation with Alice does not depend on Bob’s detected
outcome x. Furthermore, Eve shares with Bob always less
information than with Alice, IBE < IAE, and it is suffi-
cient to consider Alice and Eve’s information only.
Altogether, this allows us to evaluate the knowledge of
the different parties separately for all effective informa-
tion channels and we can restrict our analysis to find
suitable parameters ��; �; x� with IAB��; �; x� >
IAE��; ��. Since the beam splitting attack and protocol
itself are symmetrical in respect to the considered con-
jugate quadratures, it is also sufficient to investigate only
the case of a quadrature measurement X by Bob.

To identify the good effective channels, we calculate
the mutual information shared by Alice and Eve. Alice
sends a priori pure states. However, knowing nothing
about Alice’s state preparation, Eve would have to dis-
tinguish between two allowed mixed states characterized
by positive or negative displacements in the respective
quadrature. So far no general expression for the accessible
information is known for nonorthogonal mixed states.
For this reason we provide Eve with the additional
information about � and �. As a tradeoff Eve has
to distinguish for each effective channel between two
167901-2
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nonorthogonal pure states, in the case of X quadrature measurements between j�ei�i and j � �e�i�i. In this situation the
maximum accessible information is known. It is given as a function of the overlap f of the respective two states [16] in
the form

IAE � 1
2�1	

��������������
1� f2

q
� log�1	

��������������
1� f2

q
� 	 1

2�1�
��������������
1� f2

q
� log�1�

��������������
1� f2

q
�: (3)

For an effective channel with parameters � and �, the
FIG. 1. Comparison of the mutual information between Alice
and Bob and the information they share with Eve for different
state preparations with effective amplitude E � cos��� and
measured outcomes x of Bob. Positive areas, colored bright,
indicate effective information channels that contribute to se-
cure key exchange since they satisfy IAB�x; E� > IAE�x; E�.
overlap can be calculated as

f��; �� � h��
�������������
1� �

p
e�i� j �

�������������
1� �

p
ei�i � e�2�1���E2

;

(4)

where we defined E � � cos���. The protocol ensures that
the overlap and thus the mutual information of Eve de-
pends only on the effective amplitude E. As we see later,
the parameters � and � enter the mutual information of
Alice and Bob always in the same combination. This
allows us to consider in the following the parameters
�E; x� only. At this point, we note that the states between
which Eve has to distinguish and their a priori probabil-
ities do not change if we give Eve the additional infor-
mation whether Alice’s and Bob’s decoded bit differs for a
given signal. This kind of information is leaked in two-
way error correction. It is for this reason that we can
assume equality in the bound I0

�AB�E � maxfIAE; IEBg of
Eve’s information I0

�AB�E on Alice’s and Bob’s key given
the knowledge of all error positions.

Next, we calculate the mutual information of Alice and
Bob. According to the protocol, Bob performs quadrature
measurements and decodes the bit value as the sign of
the detected displacement. Depending on the signal states
j � �e�i�i, his outcomes x are distributed corresponding
to one of the probability distributions

P�xjj � �e�i�i� � jhx0 j ��e�i�ij2 �

����
2

�

r
e�2�x�

���
�

p
E�2 ;

(5)

with jx0i as the eigenstate of the quadrature operators
with � � 0. This decoding leads to an error rate

pe �

8<
:

P�xjj��e�i�i�
P�jj�ei�i�	P�xjj��e�i�i�

for x > 0;
P�xjj�ei�i�

P�xjj�ei�i�	P�xjj��e�i�i�
for x < 0:

(6)

Alice’s and Bob’s mutual information can then be
calculated separately for all effective information chan-
nels with �x; E� by the Shannon formula,

IAB�x; E� � 1	 pelog2pe 	 �1� pe�log2�1� pe�: (7)

We are now in a position to identify those effective
information channels with IAB�x; E� > IAE�x; E�, which
allow one to extract a secret key. Figure 1 displays the
differences of the respective information plotted for the
events �E; x� again in the case of 50% loss. Positive valued
areas, indicating regions of possible secure key exchange,
167901-3
are colored bright, negative ones in dark. Thus, our in-
vestigation allows us to model an ideal postselection
procedure, where all events �x; E� with IAB >
maxfIAE; IEBg actually contribute to the key.

The comparison of Fig. 1 between the mutual informa-
tion of Alice and Bob and the information they share with
Eve displays an insight that was first recognized in [15].
Alice and Bob can actually utilize statistical measure-
ment results with large x to increase their security,
but Eve, on the other hand, cannot improve her error
rate for Bob’s selected data. This is because her state is
167901-3
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uncorrelated to Bob’s results x. Furthermore, there exist
for each transmission � an optimum effective displace-
ment E, such that the mutual information between Alice
and Bob is maximized.

We can evaluate the key rates Rk that can be achieved in
the presented postselection process as

Rk � Rr �
Z
S
dxdEp�x; E��IAB�x; E� � IAE�x; E��; (8)

where Rr is the raw data rate, and S denotes the subset of
selected effective channels. For the presented protocol,
the probability p�x; E� that the effective channel is used is
composed of Gaussian distribution of width d of the
effective amplitude E and the distribution of x condi-
tioned on E. Thus, we find

p�x; E� �

�������
2

d�

r
e�2�E2=d� 1

2
�P�xjj�ei�i� 	 P�xjj � �e�i�i�;

(9)

with P�xjj � �ei�i� given in Eq. (5). First numerical
calculations, where we limited our integration over the
data set within �4, indicate that, in the presence of 50%
loss and for an optimized parameter of d � 2:1, bit rates
up to Rk � Rr � 0:0667 are achievable. For a loss rate of
75%, we have found a key rate of Rk � Rr � 0:0073.
These calculations show that the high repetition rates of
continuous variable technology, which is expected to be
in the GHz region, can actually lead to secure key rates
that are well above currently implemented schemes.

We have shown that continuous variable QKD using
coherent states in the presence of losses above 50% can
still be implemented securely against an eavesdropper
using an individual beam splitter attack. The postselec-
tion process solely relies on classical data processing and
thus does not require sophisticated quantum resources
other than coherent states. Hence, our result pushes con-
tinuous variable QKD closer to practical applications.
The existence of optimum effective displacements for
the mutual information between Alice and Bob opens
the possibility to construct more elaborated protocols
with modified probability distributions for Alice’s state
preparation to achieve higher bit rates, if one ensures that
the beam splitting attack remains the best eavesdropping
strategy. An absolute proof of security would require the
analysis of a more general attack by Eve. However, it is
likely that the beam splitting attack is the optimal attack
even in this protocol utilizing postselection.
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