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Optical RKKY Interaction between Charged Semiconductor Quantum Dots
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We show how a spin interaction between electrons localized in neighboring quantum dots can be
induced and controlled optically. The coupling is generated via virtual excitation of delocalized
excitons and provides an efficient coherent control of the spins. This quantum manipulation can be
realized in the adiabatic limit and is robust against decoherence by spontaneous emission. Applications
to the realization of quantum gates, scalable quantum computers, and to the control of magnetization in
an array of charged dots are proposed.
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exciton (of the order of 100 ps) gives a severe limitation
for the application to quantum computation, even with the

electrons. The exchange interaction between the local-
ized electron and the valence hole is negligible. For
Quantum control of an electron spin, either independ-
ent of other spins or condition on their states, in a semi-
conductor nanostructure is a central issue in the emerging
fields of spintronics and quantum information processing.
The spin of a single electron confined in a semiconductor
quantum dot (QD) was proposed [1] as a qubit for the
realization of scalable quantum computers. Quantum
gates are designed using electric gates to control via
overlap the exchange interaction between two electrons
in neighboring dots. Optical control was also proposed, in
which a cavity mode couples different dots [2], or a
dipole-dipole interaction between charged excitons
strongly polarized by an external dc field is exploited
[3]. Optical control possesses several advantages com-
pared with control by gate voltage. Ultrafast lasers can
control quantum systems on the femtosecond time scale,
and using shaping techniques the amplitude and phase of
the pulses can be designed at will, offering a great deal of
flexibility and efficiency [4].

In this Letter, we report a theory of an exchange
interaction between two electron spins in separate dots
in a typical semiconductor QD system by virtual excita-
tion of delocalized exciton states in the host material
which interact with the electrons in both dots. This
time-dependent effective interaction is driven by the ex-
ternal laser field and is, thus, controllable. The virtual
excitation by an off-resonant laser preserves the coher-
ence of the spin dynamics. This indirect exchange mecha-
nism is analogous to a RKKY interaction [5] between two
magnetic impurities mediated by conduction electron or
excitons [6], except that the intermediate electron-hole
pair is produced by the external light. The optical quan-
tum control of a single exciton in a semiconductor QD has
been recently reported in GaAs QDs generated by mono-
layer fluctuations [7] and InGaAs self-assembled QDs
[8,9]. The short radiative recombination lifetime of the
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help of shaping techniques [4]. This can be avoided by
doping QDs each with a single conduction electron and by
encoding the quantum information in the spin degrees of
freedom. Optical control by virtual excitation avoids the
fast optical decoherence. Thus, the advantages of a very
long spin coherence time in QDs [10] and fast optical
control can be combined.

Consider two electrons localized in two QDs at R‘
(‘ � 1; 2) with wave functions �‘�r�R‘� and a laser
field used to generate exciton states in a continuum. This
continuum is provided by states in the host material
embedding the QDs with an energy gap �G. QDs can be
embedded in bulk, quantum well, or quantum wire host
structures. Fluctuation QDs embedded in a narrow quan-
tum well [7] represent an example of a system with a two
dimensional continuum. A promising system for the
scheme which we propose is provided by pyramidal
QDs [11], where localized states in growth-controlled
QDs and delocalized states in the so-called vertical quan-
tum wire are well separated and can be addressed selec-
tively. In this case, the continuum states are in the vertical
quantum wire. The Coulomb interaction between the
photoexcited pairs and the localized states contains direct
and exchange contributions. The direct term gives state
renormalization. The attraction of the exciton to the dot is
determined in the long range by the dipole moment of the
exciton induced by the localized electron in the dot and in
the short range by the dot potential. The binding of the
exciton to the dot is then sensitive to the design of the dot,
ranging from a very weakly bound state to one localized
in the dot [12]. The former has a wave function overlap to
the neighboring dot and contributes to the optical RKKY.
The latter can be made far off resonance to the optical
excitation. Here we focus on the spin structure of the
Hamiltonian arising out of the exchange interaction be-
tween the localized and optically excited conduction
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FIG. 1. Effective spin-spin interaction for the localized elec-
trons in the dots 1 and 2 (indicated by dotted lines) induced by
a photoexcited electron-hole pair (the solid and dashed lines,
respectively). The indices � and � denote the spin states of the
electrons localized in the dots. The photon propagator is
depicted by a wavy line.
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convenience, �h � 1 throughout. Hence, the Hamiltonian
of the system contains, besides the electron and hole
energies in the host and in the dots, (1) the exchange
interaction between electrons,

HX � �
1

V

X
‘;	;	0

k;k0

J‘�k;k0�S‘ � s	;	0cyk;	ck0;	0 ; (1)

where Sj denotes the spin of the jth localized electron, s
the spin of the electron in the photogenerated pair, and
cyk;	 are the creation operators of free electron states; and
(2) the time-dependent control Hamiltonian describing
the creation of electron-hole pairs

HC�t� �
X
k;�

	k;��t�
2

e�i!P�tcyk;��h
y
�k;� � H:c:; (2)

where hyk;� are hole creation operators. 	k;��t� is the
time-dependent Rabi energy associated with the electric
field of the optical pulse times the transition dipole matrix
element of the electron-hole pair with momenta 	k,
resulting from taking the wave vector of the photon to
be zero. � � 	 denotes the �	 circular polarization of
light, which fixes the spin configuration of the photo-
excited electron spin state ���1=2� and hole state
��3=2�. We consider only a single heavy hole band which
is valid for GaAs confined heterostructure. For the ex-
change integral J‘�k;k0�, the Coulomb interaction is
screened by the static dielectric constant [13]. We ap-
proximate the continuum electron by a plane wave ortho-
gonalized (OPW) to the dot states and further simplify
the exchange to the form

J‘�k;k0� 
 j‘e
�i�k�k0��R‘ ; (3)

with a constant prefactor given by

jd‘ � IRy�a�B�
d�1; (4)

where � is the localization length within a dot, Ry� and
a�B denote the effective exciton Rydberg energy and Bohr
radius in the host semiconductor, I is a dimensionless
constant that depends only on the particular geometry
of the dot, and d is the dimensionality of the host. The
dependence of I on the wave vectors is removed by using a
suitable average discussed below.

In the absence of the laser pulse, the system with
two localized electrons is in a degenerate ground state
with four spin states. In the presence of a laser field
nearly resonant with the continuum, the ground
state energy is shifted by �E0 � �

P
k	��t�=2����

k2=2���1	�
��t�=2� where � � �G �!P is the detuning

of the laser with respect to the electron-hole continuum
and � is the reduced mass of the electron-hole pair. �E0

contributes to the well-known blueshift in the excitonic
transition or dynamic Stark effect. This contribution,
which is diagonal in the spin index of the localized states,
is irrelevant for our spin control purposes. However, when
167402-2
Coulomb interaction is taken into account, the spin con-
figuration of the localized electrons does affect this shift.
To calculate this effect, we break the pair propagator
��� k2=2���1 into its electron and hole parts and then
consider the self-energy correction in the electron propa-
gator due to the interaction with the localized states.
These corrections give an effective Hamiltonian for the
spins of the localized electrons. Figure 1 shows the lowest
order contribution in Coulomb interaction to the effective
exchange interaction between the two localized electrons
mediated by the free electron in the photoexcited pair.
The incoming photon (wavy line) with energy !P and
polarization �� creates a pair of electron (solid line) and
hole (dashed line). The electron in the pair interacts with
the two electrons localized in the two neighboring dots
(dotted lines) via HX in Eq. (1) and then recombines with
the hole. The indices� and � refer to the spin states of the
localized electrons. The loop contains the integral in the
exchanged energy !, and the sum in the momentum k0

e
and spin 	 of the intermediate electron. If the free car-
riers’ motion is spin independent, the interaction between
two local spins associated with this diagram contains
the term �S1 � s��S2 � s� � �S1 � S2�=4� is � �S1 � S2�=2.
When it is summed with the diagram in which the order
of the two local spins is reversed, the cross product terms
cancel. Hence, the effective spin-spin Hamiltonian as-
sumes the Heisenberg form

Hs � �2J12S1 � S2; (5)

where the effective exchange constant J12 is always posi-
tive, given by
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FIG. 2. Optically induced interaction in the two dimensional
host as a function of the distance between the dots, with the
excitonic corrections (upper three lines) and without (lower
three curves), for three detuning values. The upper limit, if
reached, of the adiabaticity condition in Eq. (9) for a swap gate
is indicated by label A. 	0 represents the peak value of the
Rabi energy in the pulse.
where me (mh) denotes the electron (hole) mass, and R �
R1 �R2. The Rabi energy can reasonably be assumed
independent of k. From Eq. (6) it can be seen that J21 �
J12. Parabolic dispersions for the electron and the hole
energies are assumed. Unpolarized light is used to induce
the ferromagnetic interaction between the local spins, so
as to avoid the spin polarization effect of the first order
process in HX.

The most important correction to Fig. 1 is due to the
Coulomb attraction between the electron and hole in the
excited pair [6], giving rise to three exciton propagators.
The electron-hole pair energies in Eq. (6) are replaced by
the exciton energies. The exciton wave functions enhance
the oscillator strength and, hence, the Rabi energies at the
two optical vertices and the exchange constants at the
spin vertices. To remain in the regime of virtual excita-
tions, the laser energy must be adjusted to below the
lowest discrete exciton state. Keeping only the 1s exciton
contribution, we obtain

J12 �
�
	

4�

�
2jd1j

d
2j�

d
1s�0�j

2

�
Id�R�; (7)

where

Id�R� �
Z ddq

�2 �d
eiq�R"d

1s�	q��
2

1� �$Mq�
2 : (8)

The term �d
1s�0� is the 1s excitonic wave function in d

dimensions, $M � 1=
�����������
2M�

p
is a characteristic optical

length related to the detuning, M is the total mass of
the pair, and 	 � mh=M. The integral in q represents the
sum over the exciton center of mass wave vectors scat-
tered by the localized electrons. The form factor is de-
fined as "d

1s�q� �
R
ddrj�d

1s�r�j
2eiq�r. The dependence of

the interaction on the interdot separation is contained in
the integrals Id�R�. Their explicit analytical expression
and the contributions from higher excitonic levels will be
given in a long publication [12]. The spatial dependence
in all three cases, d � 1; 2; 3, is dominated by two ex-
ponential terms with two characteristic lengths: the opti-
cal length $M and the Bohr radius.

In Fig. 2 we plot J12 as a function of the separation
between the dots in the two dimensional case, for three
different values of the detuning. The results when exci-
tonic effects are not included are also shown for compar-
ison. The excitonic enhancement can be more than
2 orders of magnitude. An analogous excitonic enhance-
ment effects was found in the case of spin-flip Raman
scattering of electrons trapped in neutral donors [14]. In
the calculation we used me � 0:07m and mh � 0:5m, a
Rabi energy of 0.1 meVat the peak of the pulse, 5 meV for
the exciton Rydberg, and the dot dimension �� 2a�B. A
167402-3
typical value for the Bohr radius is 150 Å. A simple
estimate of I � 5:76, the magnitude of the exchange in
Eq. (4), is obtained for one OPW from the average of
exchange j‘ squared over k and k0 for the wave vector
cutoff equal to 1:1=�. This value corresponds to the
minimum value of the averages for all possible cutoffs.
An orbital of Slater form is assumed for the localized
electron. The exchange energy between two local spins is
then of the order of 1 meV, which is comparable to the
estimated values of the exchange coupling due to tunnel-
ing in coupled QDs [15]. The interaction can be consid-
erably enhanced in systems where large QDs are
vertically stacked with separations smaller that their
lateral size.

The detuning � has to be larger than the exciton line-
width so that there is no absorption of energy in the
exciton spectrum from the pump. The dynamics of the
localized spin is thus fully coherent, and the finite life-
time � of the photoexcited states is no longer a limitation
for quantum information processing. The optical pulses
has to be switched on and off in such a way that no real
population is excited in the intermediate excitonic states.
In the simple case of a two-level system G and E, this
adiabaticity condition can be written in the form
j� ddt hG

0j�jE0ij � j�G0 � �E0 j, where jG0i and jE0i are the
time-dependent dressed states in the rotating frame (or
167402-3
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time-dependent Floquet states) of the ground and excited
state [16]. This leads to j� _		�t�j � ��2 �	�t�2�3=2.
Assuming Gaussian optical pulses of the form 	�t� �
	0e��t=��2 , we find the condition for the length of the
pulse to preserve the adiabaticity to be

��
	0

�2
: (9)

If we fix the angle of rotation of the spin by, e.g.,R
dtJ�t� �  =2 (swap gate [1]), the condition above can

be translated into an upper limit for J12. This limit is
indicated explicitly in Fig. 2 by the label ‘‘A’’ in the top
curve. The other curves shown are all within the adiabatic
limit. Our case differs from the ideal two-level case
discussed above in two aspects: the presence of a contin-
uum of excitonic states in addition to the discrete states
and the interaction of the continuum with the localized
states. Neither changes considerably the estimates which
go into the adiabaticity condition, and Eq. (9) remains
valid. The exchange Coulomb interaction between the
photoexcited electron and the localized electrons in
Eq. (1) is time independent and does not affect the adia-
baticity. For the continuum, we have used a Fano ap-
proach and defined jG0i and jE0;ki as the ground state
and continuum states dressed by the external laser field.
Because of the detuning and the neglect of higher-order
many-body effects, the Fano problem can be solved ex-
actly. The dressed states can be explicitly written as a
function of the density of states of the continuum and the
coupling. The adiabaticity condition can then be put in the
form � ddt hG

0j�jE0;ki � j�j;8 k. It is possible to prove
[12] that, for a reasonable density of states and energy
dependence of the optical coupling, it is sufficient to
satisfy this condition for k � 0. This reduces to a two-
level problem where Eq. (9) holds as a sufficient condition
for adiabaticity.

A simple experimental setup with two dots of different
sizes and a tunable laser could be used to check the spin
entanglement from the interaction proposed here. The
manipulation and measurements on a single dot can be
realized selectively by exciting at the energy of the lo-
calized exciton. Single qubit operation on a selected dot
can be carried out in a Raman configuration as proposed,
for instance, in Ref. [2]. An external magnetic field has to
be used to initialize the system. Quantum computation
requires controllable spin-spin interaction between spe-
cific nearest neighbor pairs. Our proposed mechanism can
induce spin-spin interaction. Near-field optical excita-
tions can be used to ensure the interaction is between
nearest neighbors. The dots in fact can be arranged in an
array separated by distances of the order of the wave-
length of light. Then quasidelocalized exciton states with
subwavelength extension can be excited only between the
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two dots intended to be coupled. This possibility is well
within the experimental state-of-the-art capabilities of
near-field scanning optical microscopy [17]. In such a
system, universal quantum computation can, in principle,
be realized by using only the optically controlled ex-
change interaction, without resorting to single qubit op-
eration [18]. As a possible extension to spintronics, we
suggest that a regular array of charged dots may be
magnetized by light which initializes the magnetization
by exciting conduction electrons.

In conclusion, we have proposed an optical technique
to generate and control the entanglement of the spin of
two electrons localized in neighboring QDs. The control
of the spin can be realized in the adiabatic regime and can
lead to the realization of spin quantum gates useful for
quantum information processing and to control of the
magnetization of an ensemble of dots.
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[6] C. A. R. Sá de Melo, Phys. Rev. B 51, 8922 (1995).
[7] T. H. Stievater et al., Phys. Rev. Lett. 87, 133603 (2001).
[8] H. Kamada et al. Phys. Rev. Lett. 87, 246401 (2001).
[9] H. Htoon et al., Phys. Rev. Lett. 88, 087401 (2002).

[10] J. A. Gupta, D. D. Awschalom, X. Peng, and A. P.
Alivisatos, Phys. Rev. B 59, R10 421 (1999).

[11] A. Hartmann et al., Phys. Rev. Lett. 84, 5648 (2000);
A. Hartmann, Y. Ducommun, K. Leifer, and E. Kapon,
J. Phys. Condens. Matter 11, 5901 (1999).

[12] P. Chen, C. Piermarocchi, and L. J. Sham (unpublished).
[13] L. J. Sham and T. M. Rice, Phys. Rev. 144, 708 (1966).
[14] D. G. Thomas and J. J. Hopfield, Phys. Rev. 175, 1021

(1968).
[15] G. Burkard, D. Loss, and D. P. Di Vincenzo, Phys. Rev. B

59, 2070 (1999).
[16] J. E. Bayfield, Quantum Evolution (Wiley, New York,

1999); N.V. Vitanov and S. Stenholm, Phys. Rev. A 55,
648 (1997).

[17] J. R. Guest et al., Science 293, 2224 (2001).
[18] D. Bacon, J. Kempe, D. A. Lidar, and K. B. Whaley, Phys.

Rev. Lett. 85, 1758 (2000); D. P. Di Vincenzo, D. Bacon,
J. Kempe, G. Burkard, and K. B. Whaley, Nature
(London) 408, 339 (2000).
167402-4


