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Electronic Ferroelectricity in the Falicov-Kimball Model
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I show that a spontaneous electric polarization exists in the solution of the Falicov-Kimball model by
mapping the strong coupling limit of this Hamiltonian into an xxz spin 1=2 model with a magnetic
field. In this way, I determine the phase diagram of the strongly interacting model and show the
existence of a transition to a mixed-valence regime containing two phases: an orbitally ordered state
and a Bose-Einstein condensation of excitons with a built-in electric polarization.
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with f� f hopping is either an orbitally ordered (chess-
board) state or a BEC of electron-hole pairs (excitons). In

in CaCu3Ti4O12 there are d states which are hybridized
with p bands [11].
The Falicov-Kimball [1] model (FKM) was introduced
to explain semiconductor-metal transitions and has been
extensively used to describe valence transitions in heavy
fermion compounds. Its original version contains a dis-
persive band of itinerant d electrons interacting with
localized f orbitals via an on-site Coulomb interaction.
If hybridization between both bands is included, the f
charge occupation is no longer a good quantum number,
and it is possible to build coherence between the d elec-
trons and the f holes. Based on a mean field solution of
the FKM with a hybridization term, Portengen et al. [2]
proposed that this coherence gives rise to a spontaneous
electric polarization associated with a Bose-Einstein
condensate (BEC) of d� f excitons.

Ferroelectrics are of considerable theoretical and
technological interest because of their highly unusual
properties [3]. The ferroelectric (FE) transitions have
traditionally been considered as a subgroup of the struc-
tural phase transitions. As in the case of superconductiv-
ity, the existence of ferroelectrics based on a purely
electronic mechanism would provide a new set of physical
properties [2] and technological applications; for in-
stance, it would open the possibility of controlling optical
properties with magnetic fields.

The proposal of electronic ferroelectricity in the FKM
was recently tested theoretically using different tech-
niques. An analytical calculation in infinite dimension
for the weak coupling limit [4] did not confirm its exis-
tence. By using numerical methods to solve finite-size
chains, Farkašovský [5] arrived at the same conclusion
for the intermediate and the strong coupling regimes.
Recently, Zlatić et al. [6] calculated the spontaneous
polarization in the FKM from its exact solution in infinite
dimensions. They found that the spontaneous hybridiza-
tion susceptibility diverges at zero temperature, indicat-
ing a possible nonzero polarization of the ground state.

Hybridization between the bands, however, is not the
only way to develop d� f coherence. An f� f hopping
also induces it. Furthermore, I will show that in the
mixed-valence regime, the ground state of the FKM
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particular, the condensate has a built-in spontaneous FE
or antiferroelectric (AFE) polarization induced by a pure
electronic mechanism.

I obtain the complete phase diagram of the extended
FKM by mapping the original Hamiltonian into an ef-
fective spin model. The mapping is exact in the strong
coupling limit and the resulting Hamiltonian is a spin 1/2
xxzmodel with an applied magnetic field along the ẑz axis.
This model is exactly solvable in one dimension, and its
phase diagram has been determined very accurately for
two dimensional (D � 2) systems (the exact solution has
been numerically obtained for a 96� 96 square lattice
[7]). In this way, the results obtained in this paper prove
that the phase diagram of the extended FKM contains FE
and AFE phases induced by an electronic mechanism.

Recently, high dielectric constants were observed
in oxides of the type ACu3Ti4O12. In particular, the
largest dielectric constant ever observed is exhibited by
CaCu3Ti4O12 (�0 ’ 80 000 for single-crystal samples at
room temperature) [8–10]. In addition, high resolution
x-ray and neutron powder diffraction measurements of
CaCu3Ti4O12 rule out a conventional FE structural phase
transition. The electronic ferroelectricity proposed by
Portengen et al. [2] was also ruled out due to the large
value of the optical gap (�� 1:5 eV) [11]. The strong
coupling theory introduced in this paper shows that the
excitons condense in the presence of a large gap.

I will consider an extended FKM for spinless fermions
on a D-dimensional hypercubic lattice:

H � �d
X
i

ndi � �f
X
i

nfi � td
X
hi;ji

dyi dj �U
fd
X
i

ndi n
f
i

� tf
X
hi;ji

fyi fj; (1)

where ndi � dyi di , and nfi � fyi fi are the occupation num-
bers of each orbital. For historical reasons, I denote the
orbitals by f and d, but in general they can represent any
pair of atomic orbitals with different parity. For instance,
2002 The American Physical Society 166403-1



FIG. 1 (color online). Two dimensional quantum phase dia-
gram of Heff obtained from Ref. [7]. The small circle indicates
the position of the Heisenberg point. The dashed line denotes
the quantum phase transition between the mixed valence (non-
shadowed) and the non-mixed valence regimes.
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The HamiltonianH can be rewritten as an asymmetric
Hubbard model if the orbital flavor is represented by a
pseudospin variable. A spin 1=2 is required to describe the
two orbitals (flavors) on each site:

cyi" � dyi ; ci" � di ; cyi# � fyi ; ci# � fi ; (2)

where the pseudospin generators are

�xi �
1

2

dyi fi � f

y
i di�; �yi �

i
2

fyi di � d

y
i fi�;

�zi �
1

2

ndi � n

f
i �:

(3)

The expression for H in the new language is

H � ed
X
i;�

ni� �
X

hi;ji;�

t�
c
y
i�cj� � cyj�ci��

�Ufd
X
i

ni"ni# � Bz
X
i

�zi ; (4)

where ed �
1
2 
�d � �f� and Bz � �d � �f. The new ver-

sion of H is a Hubbard model with different hoppings for
each spin flavor, t" � td and t# � tf, plus a Zeeman cou-
pling with a magnetic field Bz. Both terms break the
SU
2� symmetry of the original Hubbard model (t" � t#
and Bz � 0). The remaining symmetries are the U
1�
groups associated with the conservation of the total
charge and the total �z. In the original language, these
U
1� symmetries correspond to the conservation of the
total number of particles in each band (�H;

P
i n
f
i � �

�H;
P

i n
d
i � � 0).

I will consider from now on the half-filled case, i.e.,
one particle per site. For this concentration, it is well
known that the Hubbard model in the strong coupling
limit can be reduced to an effective Heisenberg model. In
a similar fashion, I can reduce H to an effective spin
model when t� � Ufd. The lowest energy subspace for
infinite Ufd is the one generated by states having one
particle at each site, i.e., the charge degrees of freedom
are frozen (the system is a Mott insulator) and an effec-
tive spin is localized at each site. In this limit there is a
complete spin degeneracy because the energy does not
depend on the orientation of each spin. To lift this degen-
eracy it is necessary to consider the lowest order
processes in t�=Ufd. This can be done by a canonical
transformation which eliminates the linear terms in the
hopping t� and keeps the terms of quadratic order. Up to
an irrelevant constant C � �NZJz=8, where Z is the
coordination number and N is the number of sites, the
resulting effective spin Hamiltonian is [12]

Heff �
X
hi;ji

Jz�
z
i�
z
j � J?
�

x
i�
x
j � �

y
i�
y
j� � Bz

X
i
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with Jz �
2
t2

"
�t2

#
�

Ufd
and J? �

4t"t#
Ufd

. Heff is a spin 1/2 xxz
model with an applied magnetic field along the ẑz direc-
tion. The model is Ising-like (Jz > J?). However, it is
important to consider the whole phase diagram because
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the ratio Jz=J? can take any value if nonzero nearest-
neighbor repulsions are added to H.
Heff has been exactly solved in one dimension by

means of the Bethe ansatz technique [13]. The one di-
mensional (1D) quantum phase diagram is similar to the
2D one that I describe below. The only important differ-
ence is that, as required by the Mermin-Wagner theorem
[14], the excitonic condensate is critical at zero tempera-
ture (power law correlations) for the 1D case. The phase
diagram of Heff has been determined recently for 2D
systems by solving up to 96� 96 lattices with quantum
Monte Carlo loop algorithm [7]. The zero temperature
phase diagram is shown in Fig. 1 and the corresponding
name of each phase translated back to the original lan-
guage of the FKM. Since Heff is symmetric under a
reflection in the xy plane, the phase diagram must be
symmetric under a change of sign of the magnetic field.
The fully polarized solutions, obtained for large values of
jBzj, correspond to a full f band for positive Bz (�f � �d)
and a full d band for negative Bz (�f � �d). The spec-
trum of both phases has a finite charge transfer (pseudo-
spin gap) �CT � jBz �Z
jJ?j � Jz�=2j. This gap
vanishes at the quantum critical points jBczj �

Z
2 
jJ?j �

Jz�, which are the boundaries for the mixed-valence phase
that emerges when the f and d bands are sufficiently
close: j�f � �dj<

Z
2 
jJ?j � Jz�. If Jz > J?, two phases

are possible within the mixed-valence regime. For small
values of jBzj, the Jz term dominates and induces a
longitudinal antiferromagnetic (AFM) phase (chessboard
state in the original language). When jBzj is larger than a
critical value, the magnetic field suppresses the Ising-like
ordering and the J? term induces a magnetic ordered state
in the xy plane (BEC of electron-hole pairs). The
line separating the orbitally ordered state and the BEC
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corresponds to a first order transition. This line ends at the
Heisenberg point (Jz � J?) where both phases coexist.
For Jz < J?, the only phase in the mixed-valence regime
is the BEC. In a real material, changing Bz � �d � �f can
be achieved by applying pressure or alloying.

The d� f exciton condensate has a built-in electric
polarization [2]. This can easily be seen by realizing that
the spin version of the order parameter for the BEC is the
uniform xy magnetization for negative J? (condensation
at k � 0) and the staggered xy magnetization for positive
J? (condensation at the AFM wave vector k � Q):

M? �
X
i


�xi x̂x � �yi ŷy� for J? < 0;

M?
ST �

X
i

eiQ�ri
�xi x̂x � �yi ŷy� for J? > 0:
(6)

Since M? is a two dimensional vector, it can also be
represented by a complex number jM?jei� ( tan� �
Mx=My) which is the usual expression for the order pa-
rameter of the BEC. The sign of J? is determined by the
relative sign of td and tf. On the other hand, the uniform
polarization operator is [2]

P �
�
�

X
i


dyi fi � dif
y
i � �

2�
�
Mx; (7)

where � is the interband dipole matrix element and � is
the volume of the system. Therefore, the condensate has a
built-in electric polarization which is proportional to the
x̂x (real) component of its order parameter. For positive
J?, the condensate becomes AFE because the staggered
electric polarization is proportional to Mx

ST :

PST �
�
�

X
i

eiQ�ri
dyi fi � dif
y
i � �

2�
�
Mx
ST: (8)

The three dimensional (3D) quantum phase diagram of
Heff [15] is similar to the two dimensional (2D) one
shown in Fig. 1. The same is not true for the finite
temperature phase diagrams due to the Mermin-Wagner
theorem [14]. The transition temperature associated with
the BEC is finite only for the 3D case. From the finite
temperature phase diagram obtained in Ref. [7], the BEC
of electron-hole pairs undergoes a Kosterlitz-Thouless
phase transition in a 2D system.

I will now analyze the effect that a time dependent
electric field Eei!t induces in our FE or AFE condensate
of excitons. The coupling term between the electric field
and the uniform polarization,

HI � E��
ei!t

�

X
i


dyi fi � dif
y
i �; (9)

corresponds, in the spin language, to the application of a
uniform time dependent magnetic field B1
t� �
2E��ei!tx̂x=�. From the point of view of the spin varia-
bles this is like a magnetic resonance experiment since
Heff already includes a uniform static field Bzẑz.
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Therefore, the equivalent magnetic system will have a
resonant absorption at the frequency which tends to!0 �
Bz= �h when B1 tends to zero. Back to the original lan-
guage, this means that for small electric fields the optical
absorption will be resonant at �h!0 � �d � �f. This is an
experimental fingerprint of the excitonic condensate.

Since the above theory is valid only in the strong
coupling limit, it is natural to ask whether the chessboard
ordering and the excitonic condensate survive in the
intermediate and weak coupling regimes. To answer this
question it is more convenient to use the Hubbard-like
representation of H [see Eq. (4)]. The dispersion relation
for the noninteracting part of H (Ufd � 0) is �
k; �� �
ed � Bz�� 2t�

P
# cos
k#�. At half-filling and for Bz �

0 the Fermi surface of the noninteracting problem nests at
k�Q. This indicates that an infinitesimal value of Ufd is
sufficient to induce an AFM (chessboard ordering in the
original language) instability. Again the presence of a
nonzero magnetic field will induce a transition from the
orbitally ordered state to the BEC of excitons. For the 3D
case, if Ufd < Ufdc � 2:85
jtaj � jtbj� the magnetic field
Bz induces an insulator-metal transition before the satu-
ration of the magnetization (nonmixed valence regime) is
reached [16]. This means that for weak coupling a new
metallic phase appears between the BEC of excitons and
the nonmixed valence regime (see Fig. 1). For these
reasons, I expect the phase diagram of H to contain an
electric polarized BEC in the weak and intermediate
coupling regimes as well.

What happens if we consider electrons instead of spin-
less fermions? In this case each orbital can be occupied by
two electrons, and therefore it is natural to include local
Coulomb repulsionsUff andUdd. By doing so the FKM is
replaced by a two orbital Hubbard model and the large
U';( expansion gives rise to a Kugel-Khomskii–like
model [17] containing spin s (magnetic) and pseudospin
� (orbital) degrees of freedom. If ta � �tb � t andUff �
Udd � U (the most general case will be analyzed in
Ref. [19]), the effective spin Hamiltonian is

Hs;�eff �
J0
2

X
hi;ji

Si � Sj � 
Jz � J0�
X
hi;ji

�zi�
z
j � Bz

X
i

�zi

� 2
X
hi;ji

�J0�zi�
z
j � J?
�

x
i�
x
j � �

y
i�
y
j��

�
Si � Sj �

1

4

�
;

where J0 � 4t2=U. The ground state of Hs;�eff is ferromag-
netic (FM) if J0 < Jc0. For the FM solution, Hs;�eff reduces
to Heff because all the electrons have the same spin
orientation and hence can be considered as spinless fer-
mions. Therefore the charge degrees of freedom (�) of the
FM solution are exactly described by Heff , and the phase
diagram is the one of Fig. 1; i.e., ferromagnetism coexists
with chessboard ordering or a FE BEC of excitons. If
J0 > Jc0, the system becomes AFM. In this case the ef-
fective transverse coupling for the pseudospin variables,
Jeff? � �2J?h
Si � Sj �

1
4�i, changes its sign because h
Si �

Sj �
1
4�i turns to be negative. For this reason the AFM
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solution coexists with an AFE condensate. This means
that when a magnetic field induces a transition from an
AFM phase to a FM one, it simultaneously changes the
electric polarization from AFE to FE.

From now on I will continue with the spinless case just
to isolate the basic mechanism for FE and AFE which is
associated with the charge degrees of freedom. An im-
portant aspect of this analysis is the inclusion of a non-
zero hybridization term,

HV � V
X
i;#


dyi fi�êe#
� fyi�êe#

di � f
y
i di�êe#

� dyi�êe#
fi�;

(10)

where # runs over the different spatial directions (x, y,
and z in three dimensions). The different signs in the
hybridization terms are due to the different parities of the
two orbitals. (The crystal has inversion symmetry.) By
addingHV toH, we get the following additional terms for
Heff (large U expansion):

H0
eff � J0

X
i;#

�i � �i�êe# � J
0
xz

X
i;#


�zi�
x
i�êe#

� �zi�êe#
�xi �

� iJ0yz
X
i;#


�zi�
y
i�êe#

� �zi�êe#
�yi � � 2J0

X
i;#

�xi�
x
i�êe#

;

where J0 � 4V2=Ufd and J0xz � 4V
ta � tb�=
U
fd �

Bz'�, J0yz � 4V
ta � tb�'=
Ufd � Bz'� and ' �
Bz=Ufd. Let me now consider the perturbative effects of
the hybridization (J0; J0xz � Jz; J?) on the phase diagram
of Fig. 1 for the FE case (J? < 0). The first term is a
Heisenberg interaction which just produces a renormali-
zation of Jz and J?. The mean value of the second and the
third terms are zero in the FE phase (BEC of excitons),
and therefore they do not make any contribution. The last
term introduces an easy axis anisotropy along the x̂x
direction and lifts the U(1) degeneracy. The BEC then is
replaced by an Ising-like FE state characterized by the
breaking of the remaining Z2 symmetry. Therefore, the
spontaneous ferroelectricity remains when the hybridiza-
tion is included perturbatively; however, the resonant
response to a time dependent electric field [see Eq. (9)]
disappears due to the absence of Goldstone modes. In
other words, the hybridization makes the electronically
induced FE phase similar to the ones induced by struc-
tural phase transitions.

In summary, I derived the phase diagram of the FKM
with a tf hopping term in the strong coupling limit. The
insulating phase obtained at half-filling has a transition
from a nonmixed valence to a mixed-valence regime as a
function of the energy difference between the centers of
both bands. Two different phases are present in the
mixed-valence regime: a BEC of excitons with a built-
in electrical polarization which starts just at the valence
transition and an orbitally ordered (chessboard) state
which appears when the centers of the bands are suffi-
ciently close. These results were extended to the inter-
mediate and weak coupling regimes due to the nesting
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property of the Fermi surface of hypercubic lattices. I
also mentioned the effect of including spin degrees of
freedom inH: the interplay between magnetic and charge
degrees of freedom gives rise to the coexistence of FE and
FM phases which are coupled to each other. This opens
the possibility of controlling optical (magnetic) proper-
ties by applying magnetic (electric) fields.

The effect of a nonzero hybridization was also consid-
ered. The main conclusion is that the U
1� degeneracy
associated with the BEC of excitons is lifted by the
hybridization and replaced by an Ising-like FE state
(broken Z2 symmetry). Then, the resonant response to a
time dependent electric field disappears because the
Goldstone modes acquire a finite mass (gap).

These results indicate that the following characteristics
are favorable to the formation of an electronically driven
FE state: (a) The system must be in a mixed-valence
regime and the two bands involved must have different
parity. (b) It is best, though not necessary, if both bands
have similar bandwidths. (c) A local Coulomb repulsion
(Ufd) between the different orbitals is required. (d) The
hybridization between the bands must be small compared
to their bandwidths.
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(1994).
[17] K. I. Kugel and D. I. Khomskii, Sov. Phys. Usp. 25, 231

(1982).
[18] C. D. Batista (to be published).
166403-4


