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Confinement of Electrons in Layered Metals
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We analyze the out of plane hopping in models of layered systems where the in-plane properties
deviate from Landau’s theory of a Fermi liquid. We show that the hopping term acquires a nontrivial
energy dependence, due to the coupling to in-plane excitations, and the resulting state, at low
temperatures, can be either conducting or insulating in the third direction. The latter is always the
case if the Fermi level lies close to a saddle point in the dispersion relation.

DOI: 10.1103/PhysRevLett.89.166401

Layered materials have been the object of intensive
study because they present important physics. Unusual
properties are derived from the anisotropy and perio-
dicity along the axis perpendicular to the planes [1].
Among the most studied layered materials are the high-
temperature cuprate superconductors. In the normal state
the transport properties within the CuO, planes are very
different from those along the ¢ axis: electron motion in
the ¢ direction is incoherent in contrast with the metallic
behavior of the in-plane electrons as probed by the differ-
ent p. and p,, resistivities [2,3]. The relevance of the
nature of the conductance in the direction perpendicular
to the CuO, planes has been noted on both theoretical [4—
6] and experimental [7] grounds.

Graphite is another layered material which presents
unconventional properties, such as the linear increase
with energy of the inverse lifetime. These results suggest
deviations from the conventional Fermi liquid behavior,
which could be due to strong Coulomb interaction, which
remains unscreened because of the lack of states at the
Fermi level [8,9]. It is interesting to note that, as different
experiments suggest, the conductivity of graphite shows
an insulating behavior in the direction perpendicular to
the layers, while it is metallic along the layers [10]. Other
experiments show evidence of anomalous behavior in
other properties [11].

The anomalous out of plane behavior of the cuprates
has led to the suggestion that conventional Fermi liquid
theory fails in these compounds [4]. An alternative ex-
planation of the emergence of incoherent behavior in the
out of plane direction has been proposed in terms of the
coupling of the interlayer electronic motion to charge
excitations of the system [6]. This approach implicitly
assumes that electron-electron interactions modify the
in-plane electron propagators in a nontrivial way.

In the following, we show that, even in the clean limit,
many body effects can suppress the coherent contribution
to the out of plane electron hopping. We define the clean
limit as that in which the length scale, L, over which elec-
trons remain coherent within the layers diverges. We first
apply the method to the well understood problem of in-
terchain tunneling in an array of clean Luttinger liquids.
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We recover known results, and show that the method is
equivalent to lowest order scaling, which, in turn, gives
the renormalization of the interchain tunneling with log-
arithmic accuracy [12-15]. Then, we extend the calcula-
tion to layered models where the intralayer properties
show deviations from Fermi liquid behavior [9,16].

The method of calculation.—The influence of inelastic
scattering on electron tunneling has been studied, using
equivalent methods, in mesoscopic devices which show
Coulomb blockade [17], Luttinger liquids [13-15,18], and
dirty metals [19]. The simplest formulation of the method
replaces the excitations of the system (such as electron-
hole pairs) by a bath of harmonic oscillators with the
same excitation spectrum. This approach can be justified
rigorously in one dimension, and is always an accurate
description of the response of the system when the cou-
pling of the quasiparticles to each individual excitation is
weak [20].

In the following, we will assume a local interaction
between electrons close to the Fermi level, and the charge
fluctuations of the system:

Hip = cle; > vik)pg, (1)
Kk

where ¢; creates an electron at site i, and p; describes the
charge fluctuations of the environment, which are to be
described as a set of harmonic modes. The Hamiltonian
of the system is approximated as:

j-[efb =5{elec+g{env+g{int
= Zt,jc:rcl + Z(,()kbltbk + ng,ic;-rci(bz + bk)’

2

where FH .. describes the individual quasiparticles,
H ., stands for the set of harmonic oscillators which
describe the environment, and 7, defines the (linear)
coupling between the two. The b; are boson creation
operators, the t;; describe the electronic hopping proc-
esses, and the information about the interaction between
the electron in state i and the system is defined by the
function [20] Ji(w) = >, lgril*6(w — wy).
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Using second order perturbation theory and Eq. (1), we
can write [17,20]

Ji(w) = VAK)Imy(k, o), 3)
K

where y(K, ®) is the Fourier transform of the density-
density response of the system, {p(r)p_;;(0)). The in-
teraction in Eq. (1) is spin independent. Other, more
complicated, couplings can also be taken into account,
provided that the appropriate response function is used.

The influence of the electron-boson coupling on the
electron propagators can be calculated to all orders if the
state i is localized, that is, neglecting the hopping terms
in Eq. (3). We find

(el @)e () ~ (cfBeit),
Xexp{—fdw[l el Jilo )}, “)

where (c:r(t)c,-(t’)>0 ~ ¢#i=") s the Green’s function in
the absence of the interaction. The method that we use
assumes that Eq. (4) also holds in a system with extended
states. For a standard metallic system, we must insert
(cT(t)c (#"))g ~ 1/(t = ¢') in Eq. (4). It can be shown that
this approximation is exact at short times, W <
(t—1)"' < A, where W is an energy scale related to
the dynamics of the electrons, and A is the upper cutoff
in the spectrum of the environment.

The time dependence in Eq. (4) is determined by
l1mwﬁ0 x(k, a)) In a gapless, metallic system, we have
x(k, o) ~ a(k)|ol.
Eq. (4), leads to

(el (D) ~

This behavior, when inserted in

1
= ®)

where
a=j) R V2 (R)a(K), ©)
|k|<L™!

where L is the scale of the region where the tunneling
process takes place. The value of L is limited by the
length over which the phase of the electronic wave func-
tions within the layers is well defined. We assume that, in a
translationally invariant system, there is no dependence
on the position of the local orbital, i. This result implies
that the frequency dependence of the Green’s function, in
a continuum description, can be written as

lim G — 1/, w) « |w]® @)

[F—F/|—=0

We can now use Eq. (5) to analyze the interlayer tunnel-
ing by applying renormalization group methods. The
simplest case where this procedure has been used is for
the problem of an electron tunneling between two states, i
and j, which has been intensively studied [21,22]. We
integrate out the high energy bosons, with energies A —
dA = w; = A, and rescaled hopping terms are defined.
As mentioned earlier, Eq. (5) is valid for this range of
energies. The renormalization of the hoppings is such that
the properties of the effective Hamiltonian at energies
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@ < A remain invariant. If the hoppings t;; are small,
any physical quantity which depends on them can be
expanded, using time dependent perturbation theory, in
powers of

t2(c] (e ()] ()ei()) = el W)e())e;@)e (7).

®)
The integration of the high energy modes implies that the
terms in Eq. (8) are restricted to t = A~!, or, alterna-
tively, the time units have to be rescaled [23], 7/ =
Te?™/A where 7 ~ A~!. Using Eq. (5), the condition of
keeping the perturbation expansion in powers of the

terms in Eq. (8) invariant implies that
tl2] — t%je(dA/A)(2+2a), (9)

which can also be used to define the scaling dimension of
the hopping terms. Finally,
at;/A) t;;

5] a A (10)
where [ = log(Ay/A), and A, is the initial value of the
cutoff.

This approach has been successfully used to describe
inelastic tunneling in different situations in [6,13—19].

The analysis that leads to Eq. (10) can be generalized to
study hopping between extended states, provided that we
can estimate the long time behavior of the Green’s func-
tion, G(k, t — ') = (ch ()i (). This function is related
to the local Green’s functlon Eq. (7), by

Jim G(f'—f-’,w)=/deG(k,w), (i1

[F—F/|—=0
where D is the spatial dimension. In the cases discussed
below, the interaction is instantaneous in time, and the
noninteracting Green’s function can be written as

Gk, ) = (";) (12)

where z = 1, 2. In the following, we assume that the inter-
acting Green’s function has the same scaling properties,
with the factor w ! replaced by w % in Eq. (12), where &
depends on the interactions. This can be shown to be
correct in perturbation theory to all orders, in the models
studied below, because the corrections depend logarith-
mically on w (it is a well known fact for the Luttinger
liquid). Then, using Eqgs. (7), (11), and (12), we obtain

G(k, w) leaD/Z:F(g), (13)

and F(u) is finite. Thus, from the knowledge of the real
space Green’s function, using Eq. (4), we obtain «, which,
in turn, determines the exponent a + D/z which charac-
terizes G(k, w). Generically, we can write

Go(@) ~ 0|, (14)
where the subindices /, e stand for localized and extended
wave functions. In terms of these exponents, we can
generalize Eq. (10) to tunneling between general states to

tl ¢/A t..
MilD _ 5, (15)

al A
Before proceeding to calculations of d; and &, for various
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models, it is interesting to note that, in general, the response function of an electron gas in dimension D > 1 behaves as

lim,, o1& 1o Xk, ) ~

lw|/|K], so that, from Eq. (6), lim;_ a ~ L1~P), Thus, for D > 1, the contribution of the

inelastic processes to the renormalization of the tunneling vanishes for delocalized states, L — oo.
One dimensional systems.—We assume a smooth, short range interaction parametrized by U. Using second order

perturbation theory, Eq. (4), becomes

lim ik

L—o JIk|«L™! w
This logarithmic divergence remains in higher order
perturbation theory, because of the scaling properties of
the response function of a Luttinger liquid.

Equation (16) leads to a Green’s function like that in
Eq. (4), with @ = 8, ~ (U/E)?. For this model, D = 1
and z = 1. Then, using Eq. (13), 6, = a — 1. Tunneling
between localized states is suppressed at low tempera-
tures, while tunneling between delocalized states is not,
unless @ = 1 [13].

Graphene planes.—The simplest two-dimensional
model for interacting electrons where it can be rigorously
shown that the couplings acquire logarithmic corrections
in perturbation theory is a system of Dirac fermions (€, =
vFIkI) with Coulomb, 1/|F —¥/|, interaction. This model
can be used to describe isolated graphene planes [9,24].

In order to apply the procedure outlined in the previous
section, one needs the Fourier transform of the coupling
between quasiparticles and the density fluctuations,

V(K) = ¢2/(eylk|), where e is the electronic charge,
and € is the dielectric constant, and the response func-
tion of the system. For a single graphene plane, this
quantity is .

Imy,(K, ) =1|}‘—|. (17)
Swlv%|k|2 — w?
These expressions need to be inserted in Eqg. (6).
Alternatively, we can use the RPA, and include the effects
of interplane screening, as described in [24]. As the long
range properties of the screening potential remain un-
changed, we expect no qualitative changes. Hence, for
simplicity, we consider the expression in Eq. (17). Using
Eq. (6), we obtain an expression similar to Eq. (16),
except that the local potential U has to be replaced by
¢?/(€o|K|). The integral in Eq. (16) also diverges loga-
rithmically in the present case, with a prefactor o ~
e*/(eyvr)* which does not depend on L. The main differ-
ence with the previous case is that Eq. (7) has to be
replaced by Jim GRE = Fw) = ol (18)
where a ~ e*/v%. In the absence of interactions, a = 0,
the density of states vanishes at the Fermi level, because
of the semimetallic nature of graphene. Equation (18)
gives 6; = 1 + «a. For this system, D = 2 and z = 1, so
that 6§, = a« — 1. Tunneling between localized states is
always strongly suppressed at low temperatures, while
tunneling between extended states is suppressed only if
a=1.

In graphite, the dimensionless coupling constant,

e?/vp, is of order unity. Under renormalization, it

166401-3

eiol=1) UZImX(E, w) ~

U log[vp(t — t')/L]. (16)

flows towards zero [9], so that & becomes scale depen-
dent, and vanishes at low energies. Thus, interplane tun-
neling increases at low energies, leading to interlayer
coherence. Note, however, that in a dirty system with a
finite mean free path, short range interactions can grow at
low energies, leading to the suppression of interplane
tunneling [24].

Saddle point in the density of states.—The Fermi sur-
face of most hole-doped cuprates is close to a Van Hove
singularity. The possible relevance of this fact to the
superconducting transition as well as to the anomalous
behavior of the normal state was put forward in the early
times of the cuprates and gave rise to the so-called Van
Hove scenario [25]. We will assume that the metallic
layers are well described by electrons in a square lattice,
and that the Fermi level is close to the (7, 0)(A) and
(0, 7)(B) points of the Brillouin zone (BZ). Close to these
points, the dispersion relation can be parametrized as

. K _ kK
gap(k) = m + 2my , (19)
Xy y,x

where m, and m, are parameters which can be estimated
from the band structure of the model. In the following, we
will consider the renormalization of the interlayer tun-
neling associated with these regions in the Brillouin zone.
Note that in the case of the cuprate superconductors
matrix elements suppress the interlayer tunneling at
points close to the diagonal of the BZ.

The response function at low energies and small wave
vectors has been computed in [16]:

Loss function
2
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1.25
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FIG. 1. Effective potential as a function of the energy for
fixed k for a system of Van Hove layers coupled by Coulomb
interaction.
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. 1 . .
Imy(k, w) = [:zA;quw + &;(k)| — o — g;(k)]),

(20)

where ¢;(k) is the dispersion relation (19).

The long time dependence of the Green’s function
is determined by the low energy behavior of y:
lim,, o Imy(k, @) ~ > ;_, g lw|/e;(k). We assume that
the interaction between the electrons and the density
fluctuations is short ranged as before. The divergence of
Imy when g4 3 = 0 implies that the integral in Eq. (6)
diverges logarithmically as L — oo, as in the two pre-
ViO_l;lS cases, irrespective of the details of the interaction,
V(k). Because of this divergence, it is convenient to shift
slightly the chemical potential, u away from the saddle
point [16], £,. A finite value of |u — &,5| implies the
existence of a length scale, Ly~ [Max(m,, m,)|lu —
e,1117"/2, which regularizes the k integrals in Eq. (6).

Using a local potential as in the D = 1 case, we find
a ~ (U/Ep)*log?(L/L,), where E is an energy scale of
the order of the width of the conduction band. The de-
pendence of @ on L goes as log’(L/L,), as in other
physical quantities in this model [16].

Figure 1 compares well with the effective potential [3]
obtained numerically for a system of Van Hove layers.
Figure 1 compares well with the experimental plots of the
loss function given in [26] which reveals that the Van
Hove model is also compatible with transport experi-
ments [27].

In this model, D =2 and z = 2, so that §;, = «, as
estimated above, and 6, = a — 1. The divergence of «
implies that tunneling between localized and also be-
tween extended states is suppressed at low temperatures.
In addition, the effective electron-electron coupling, U,
grows at low energies or temperatures, until a scale at
which the system is unstable and a phase transition takes
place [16]. This effect enhances the suppression of inter-
layer hopping.

Conclusions.—We have discussed the suppression of
interlayer tunneling by inelastic processes in two-
dimensional systems in the clean limit. Our results sug-
gest that, when perturbation theory for the in-plane in-
teractions leads to logarithmic divergences, the out of
plane tunneling acquires a nontrivial energy dependence.
The conductance goes to zero as T — 0 if the Fermi level
of the interacting electrons lies at a Van Hove singularity.
Thus, we have shown that insulating behavior in the out of
plane direction is not incompatible with gapless or even
superconducting in-plane properties, although the in-
plane properties are also markedly different from those
of an ordinary Fermi liquid.

We are thankful to R. Markiewicz for a careful reading
of the manuscript. The financial support of the
CICyT (Spain), through Grants No. PB96-0875,
No. 1FD97-1358, and No. BFM2000-1107, is gratefully
acknowledged.

166401-4

Note added in proof.—Recent experiments [28] are

(1]
(2]
(3]
(4]
(5]
(6]
(71
(8]
(91
(10]
[11]
[12]
[13]
[14]

[15]

[16]

(17]

[18]
[19]
[20]

(21]
[22]

(23]
(24]

[25]
[26]
[27]

(28]

consistent with the existence of confinement within layers
analyzed in this work.

P. Hawrylak, G. Eliasson, and J.J. Quinn, Phys. Rev. B
37, 10187 (1988).

T. Watanabe, T. Fuji, and A. Matshada, Phys. Rev. Lett.
79, 2113 (1997).

Y. Ando et al., Phys. Rev. Lett. 77, 2065 (1996).

P.W. Anderson, The Theory of Superconductivity in the
High-T,. Cuprate Superconductors (Princeton University
Press, Princeton, NJ, 1997).

A.J. Leggett, Science 268, 1154 (1995).

M. Turlakov and A.J. Leggett, Phys. Rev. B 63, 064518
(2001).

D. van der Marel et al., Physica (Amsterdam) 235-240C,
1145 (1994).

S. Xu et al., Phys. Rev. Lett. 76, 483 (1996).

J. Gonzalez, F Guinea, and M. A. H. Vozmediano, Nucl.
Phys. B424, 593 (1994); Phys. Rev. Lett. 77, 3589 (1996);
Phys. Rev. B 59, R2474 (1999).

L. Edman, B. Sundqvist, E. McRae, and E. Litvin-
Staszewska, Phys. Rev. B 57, 6227 (1998).

H. Kempa et al., Solid State Commun. 115, 539 (2000); Y.
Kopelevich et al., J. Low Temp. Phys. 119, 691 (2000); R.
Ricardo da Silva et al., Phys. Rev. Lett. 87, 147001 (2001).
R. Shankar, Rev. Mod. Phys. 66, 129 (1994).

X.G. Wen, Phys. Rev. B 42, 6623 (1990).

C.L. Kane and M. P. A. Fisher, Phys. Rev. Lett. 68, 1220
(1992); Phys. Rev. B 46, 15233 (1992).

F Guinea and G. Zimanyi, Phys. Rev. B 47, 501 (1993);
J.M. P. Carmelo, P.D. Sacramento, and E Guinea, Phys.
Rev. B 55, 7565 (1997); A. H. Castro-Neto and E. Guinea,
Phys. Rev. Lett. 80, 4040 (1998).

J. Gonzalez, F. Guinea, and M. A.H. Vozmediano,
Europhys. Lett. 34, 711 (1996); Nucl. Phys. B485, 694
(1997); Phys. Rev. Lett. 84, 4930 (2000).

See G. Ingold and Yu. V. Nazarov, in Single Charge
Tunneling, edited by H. Grabert and M. H. Devoret
(Plenum Press, New York, 1992).

M. Sassetti, E Napoli, and U. Weiss, Phys. Rev. B 52,
11213 (1995).

J. Rollbuhler and H. Grabert, Phys. Rev. Lett. 87, 126804
(2001).

A.O. Caldeira and A.J. Leggett, Ann. Phys. (N.Y.) 149,
374 (1983).

A.J. Leggett et al., Rev. Mod. Phys. 59, 1 (1987).

U. Weiss, Quantum Dissipative Systems (World Scientific,
Singapore, 1993).

J. Cardy, J. Phys. A 14, 1407 (1981).

J. Gonzalez, FE. Guinea, and M. A. H. Vozmediano, Phys.
Rev. B 63, 134421 (2001).

See, for instance, R.S. Markiewicz, J. Phys. Condens.
Matter 2, 665 (1990), and references therein.

Y-Y. Wang, G. Feng, and A. L. Ritter, Phys. Rev. B 42, 420
(1990).

M. A. H. Vozmediano, M. P. Lépez-Sancho, and E Guinea
(to be published).

P. Esquinazi et al, Phys. Rev. B 66, 024429 (2002);
T. Valla et al., Nature (London) 417, 627 (2002).

166401-4



