VOLUME 89, NUMBER 16

PHYSICAL REVIEW LETTERS

14 OCTOBER 2002

Steep Sharp-Crested Gravity Waves on Deep Water
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A new type of steep two-dimensional irrotational symmetric periodic gravity wave with local
singular point inside the flow domain is revealed on inviscid incompressible fluid of infinite depth. The
speed of fluid particles in the vicinity of the crest of these waves is greater than their phase speed.
Corresponding particle trajectories provide insight into how gravity waves overturn and break.
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A proper understanding of various wave phenomena on
the ocean surface, such as the formation of breaking
waves and whitecaps [1,2], solitary [3] and freak [4]
waves, as well as modulation effects and instabilities of
large amplitude wave trains [5,6] requires detailed
knowledge of the form and dynamics of steep water
waves. For the first time surface waves of finite amplitude
were considered by Stokes [7]. Stokes conjectured that
such waves must have a maximal amplitude (the limiting
wave) and showed the flow in this wave to be singular at
the crest forming a 120° corner (the Stokes corner flow).
Much later, Grant [8] suggested that this singularity, for a
wave that has not attained the limiting form, is located
above the wave crest and forms a stagnation point with
streamlines meeting at right angles. A strict mathemati-
cal proof of the existence of finite amplitude Stokes waves
was given by Nekrasov [9]. Toland [10] proved that
Nekrasov’s equation has a limiting solution describing a
progressive periodic wave train such that the flow speed at
the crest equals the train phase speed, in the frame of
reference, where fluid is motionless at infinite depth.
Longuet-Higgins and Fox [11] constructed asymptotic
expansions for waves close to the 120°-cusped wave (al-
most highest waves) and showed that the wave profile
oscillates infinitely as the limiting wave is approached.
Later, in [12], the crest of a steep irrotational gravity
wave was theoretically shown to be unstable.

The purpose of the present work is to investigate the
dynamics of gravity waves beyond the Stokes corner flow
and to provide insight on the occurrence of deep water
breaking. The traditional criterion for wave breaking is
that horizontal water velocities in the crest must exceed
the speed of the crest [1]. We give evidence for the
existence of a family of two-dimensional irrotational
symmetric periodic gravity waves that satisfy this crite-
rion. A stagnation point in the flow field of these waves is
inside the flow domain, in contrast to the Stokes waves of
the same wavelength. This makes streamlines exhibit
discontinuity with near-surface particles being jetted
out from the flow. To all appearances, this effect is ob-
served in the form of whitecapping of steep waves in the
vicinity of their crests.
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The original motivation was as follows: the Bernoulli
equation is quadratic in velocity and admits two values of
the particle speed at the crest. The first one corresponds to
the Stokes branch of symmetric waves for which the
particle speed at the crest is smaller than the wave phase
speed. The opposite inequality takes place for the second
branch, which might correspond to a new type of wave. In
the second part of the Letter, we prove this numerically
by using two different methods.

Consider a symmetric two-dimensional periodic train
of waves propagating without changing its form from left
to right along the x axis with constant speed c relative to
the motionless fluid at infinite depth. The set of equations
governing steady potential gravity waves on the surface
of irrotational, inviscid, incompressible fluid is
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where @ = x — ct is the wave phase, (6, y) is the veloc-
ity potential, 5(0) is the elevation of the free surface, and
y is the upward vertical axis such that y = 0 is the still
water level. We have chosen the units of time and length
such that the acceleration due to gravity and wave number
are equal to unity. Once the velocity potential is known,
particle trajectories (streamlines) are found from the
following differential equations:

do dy
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in the frame of reference moving together with the wave.

As it follows from the Bernoulli equation (2), a solution
may be not single valued in the vicinity of the limiting
point. Indeed, the particle speed at the crest g(0) is
horizontal and is defined as follows:

Dy[0, n(0)] = ¢(0) = ¢ =4/c* — 27(0), (6)
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77(0) being the height of the crest above the still water
level. Note that when using the term “crest” we mean the
highest point of the wave surface that is located on the
axis of symmetry of a wave. The “—"" sign in (6) corre-
sponds to the classical Stokes branch. The value
Nmax(0) = ¢?/2 corresponds to the Stokes wave of limit-
ing amplitude. In this case, the particle speed at the crest
is exactly equal to the wave phase speed: ¢n.(0) = ¢
Taking into account both signs in expression (6), we
assume that a second branch of solutions should exist
apart from Stokes waves, at 17(0) < 17,,,<(0). The particle
speed at the crest of a new gravity wave must be greater
than ¢ and has to increase from ¢ to 2¢, while the wave
height decreases from 7,,,,(0) to 0.

Moreover, the mean levels of these two flows relative to
the level y = 0 of still water may also be different:

1
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Thus, the existence of a second branch of solutions to the
set of equations (1)—(4) does not contradict Garabedian’s
theorem [13] that gravity waves are unique if all crests
and all troughs are of the same height because the latter
was proved for flows with the same mean Ilevel
Furthermore, streamlines in a flow for which g(0) > ¢
seem to be discontinuous in the vicinity of the wave crest,
whereas Garabedian’s theorem deals with regular
flows only.

To obtain numerical solutions we apply the method of
truncated Fourier series and the collocation method using
the spatial coordinates as independent variables. Herein
we assume that it is possible to approximate discontinu-
ous flows by continuous expansions [14].

The method of the Fourier approximations.—Let us
introduce the complex function R(6, y) such that

® = —ic(R — RY), ¥ = ¢(R + RY), (8)

where W is the stream function and * is the complex
conjugate. Using the relations &, = ¥, & = -V, the
kinematic boundary condition (3) can be presented as
follows:

LIRG ) + RO W)~ @] =0 ©)
X

Approximate symmetric stationary solutions of
Egs. (1), (2), (9), and (4) are looked for in the form of
the truncated Fourier series with real coefficients

N
R(0,y) =D &uexpln(y +i0)]; (10)
n=1

M
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where the Fourier harmonics &,, 17,, and the wave speed ¢
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are functions of the wave steepness A determined by the
peak-to-trough height:

0) - 2 A
A= 7’7() 7 =;Z Moas1, (12)

square brackets designating the integer part. Substitution
of expansions (10) and (11) into the dynamical and kine-
matic boundary conditions (2) and (9) [the Laplace equa-
tion (1) and boundary condition (4) are satisfied exactly]
yields the following set of N + M + 1 nonlinear alge-
braic equations for the harmonics ¢, ,, and the wave
speed c:

Z gnl n ny
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where f,' are the Fourier harmonics of the exponential
functions exp[n;n(0)]:

f}iln = Zl-
(15)

They were calculated using the fast Fourier transform
(FFT). In addition to these equations, the connection (12)
between the harmonics 7, and the wave steepness A
should be taken into account.

The set of equations (13) and (14) was solved by
Newton’s iterations in arbitrary precision computer arith-
metic. Since the nonlinearity over &, and 7, is of differ-
ent character (polynomial and exponential), M should be
chosen greater than N to achieve good convergence. A
different number of modes for the truncation of the
Fourier series (10) and (11) was also used by Zufiria
[15] in the framework of Hamiltonian formalism.

The method of collocations.—The harmonics &, of
expansion (10) can also be found in another way without
expanding elevation into the Fourier series. In this ap-
proach, Eq. (2) and explicitly integrated Eq. (9) are to be
satisfied in a number of the collocation points 6; =
jm/N, j = 0, N, equally spaced over the half of one wave-
length from the wave crest to the trough, similar to
Rienecker and Fenton [16]. This leads to 2N + 2 algebraic
equations for the harmonics £, the values of the elevation
7 at the collocation points, and the wave speed c. To make
the numerical scheme converge better a greater number of
collocation points may be used in the dynamical bound-
ary condition (2): M = PN, P being an integer.

The results of calculations and discussion.—The de-
pendence c(A) of the speed of steep gravity waves on their
steepness is shown in Fig. 1. Along with the curves
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——— — the Fourier method
(N =200, M = 3N)
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FIG. 1. The phase speed c of surface gravity waves versus
their steepness A.

obtained by the Fourier and collocation methods, we
included high accuracy calculations of the Stokes branch
obtained by Tanaka’s program, where the method of in-
verse plane is used according to his paper [17]. In the plot,
point 1 (A = 0.13875) is the maximum of wave speed,
point 2 (A =0.14092) is the relative minimum,
and point 3 (A = A = 0.141074) corresponds to the
limiting steepness at N and M given. For greater N and M,
Apnax = 0.141 06 is obtained. Note that less accurate cal-
culations by the collocation method give a greater value
of the limiting steepness, which is close to that reported
by Schwartz [18].

The streamlines of the Stokes flow that has not attained
its limiting form (almost highest flow) are extended out-
side the domain filled by fluid and are shown in Fig. 2
near the wave crest, in the frame of reference moving
together with the wave. The profile 5n(#) of a regular
Stokes wave coincides all over the period with one of
the streamlines calculated from (5). One can see from
Fig. 2 that there is the stagnation point O above the wave
crest with streamlines meeting at right angles in accord-
ance with the results of Grant [8] and Longuet-Higgins
and Fox [11]. There, such points are called singular of
order one-half.

The key result of our numerical investigation is that
besides the regular Stokes flow we revealed a singular
potential flow with stagnation point O, of order one-half
located inside the flow domain. As is seen from Fig. 3, the
streamline coinciding with the wave profile n(6) at some
distance from the crest is discontinuous near the crest.
Because of this we call such a wave and flow “irregular.”
At the same time, the function 7(6) defined by expansion
(11) is continuous everywhere. Actually, such a continu-
ous form of the profile for the irregular wave is the
consequence of convergence in the mean of the Fourier
series for a discontinuous function [14].
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FIG. 2. The streamlines of the almost highest Stokes flow
near the wave crest, extended outside the domain filled by fluid,
in the frame of reference moving together with the wave.

As wave steepness drops relative to the limiting value,
the difference between flows in the crests of regular
Stokes and irregular waves becomes stronger. On
the contrary, as wave steepness tends to the limiting
value, the singular points of both flows O and O; move
towards the wave crest from above and below, respec-
tively. Thus, we can assume that the 120° corner at the
crest of the limiting Stokes wave is formed by merging
these two singular stagnation points of order one-
half. Therefore, the Stokes corner flow seems to be the
superposition of a regular Stokes flow and a singular
irregular flow.

Dependence of the wave speed of irregular waves on
their steepness is represented in Fig. 1 by the branch 3-4.
The speed of particles at the crests of the waves from this
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FIG. 3. The streamlines of the almost highest irregular flow
near the wave crest, in the frame of reference moving together
with the wave. The profile of the Stokes wave of the same
steepness is also included for comparison.
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TABLE I. The wave speed ¢ for steep regular Stokes and
irregular waves with wave steepness A calculated by the
Fourier method at N = 200, M = 3N. The values for Stokes
waves obtained by Tanaka’s program are presented to estimate
the accuracy of our calculations.

Regular Stokes waves Irregular waves

A ¢ CTanaka ¢
0.14 1.0926149034 1.092614903 4 1.092 46
0.1406  1.09233763 1.0923377499 1.092 49
0.14092 1.0922742 1.092276 8392 1.092 42
1.092276 1* 1.092 43
0.141 1.0922796 1.0922808596 1.09239
0.14106  1.092295° 1.0922851047 1.092355°

AN =250, M = 3N.
°N =200, M = 4N.

branch is greater than their phase speed. The values of the
wave speed ¢ for Stokes and irregular waves calculated
by the Fourier method at different values of wave steep-
ness are presented in Table I. High accuracy values for
Stokes waves obtained by using Tanaka’s program are
also included for comparison. One can see that accuracy
of the Fourier method for the Stokes branch gradually
decreases as wave steepness increases up to the almost
highest steepness A = 0.141 06. The corresponding value
of the wave speed has only five digits stabilized. While
moving along the new branch accuracy becomes still less,
and much greater N are needed to stabilize a greater
number of digits. As a result, the loop in Fig. 1 has
not yet stabilized at N =200 and will enlarge with
increasing N, the cross-section point with the Stokes
branch moving to the left.

Irregular waves, which we found numerically using
two independent methods, present a new type of singular
gravity wave we looked for. In the present work, we are
interested only in the existence of new stationary solu-
tions and did not investigate their stability. It is known
[17] that the total energy of Stokes waves attains the
absolute maximum at the steepness A = 0.1366, which
is much smaller than the limiting one. As wave steepness
is increased further, regular Stokes waves become unsta-
ble due to superharmonic [17] or crest [12] instabilities. To
all appearances, the obtained irregular flow with discon-
tinuous streamlines is the result of developing these in-
stabilities. This flow is characterized by the presence of
the near-surface layer of fluid particles that are acceler-
ated to velocities greater than the wave phase speed when
approaching the crest. As a result, they form symmetric
jets, which are apparently observed in the form of white-
caps near the crests of steep waves and are responsible for
wave breaking. Verification of this assumption demands
both taking into account surface tension and developing a
more powerful numerical algorithm since the ones pre-
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sented above become ineffective. We suppose that further
investigation of obtained discontinuous irregular flows in
more complicated systems would be useful for explaining
appearance and evolution of many nonstationary proc-
esses such as wave overturning, formation of spilling and
plunging breakers, bubble clouds, jets, etc. Finally, the
fact of the existence of irregular flows follows from the
Bernoulli equation (which represents the energy conser-
vation law) and does not depend on depth, as follows from
Eq. (6). We have recently proved this for a layer of finite
depth [19].
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