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On-Off Intermittency in a Human Balancing Task

Juan L. Cabrera* and John G. Milton†

Department of Neurology, MC-2030, The University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois 60637
(Received 5 June 2001; revised manuscript received 28 May 2002; published 20 September 2002)
158702-1
Motion analysis in three dimensions demonstrate that the fluctuations in the vertical displacement
angle of a stick balanced at the fingertip obey a scaling law characteristic of on-off intermittency and
that > 98% of the corrective movements occur fast compared to the measured time delay. These
experimental observations are reproduced by a model for an inverted pendulum with time-delayed
feedback in which parametric noise forces a control parameter across a particular stability boundary.
Our observations suggest that parametric noise is an essential, but up until now underemphasized,
component of the neural control of balance.
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delayed feedback in stick balancing is demonstrated by
the observation that longer sticks are much easier to

�1–2 Hz peak in the power spectrum is not part of the
phenomenon we discuss in this Letter [13].
Two intrinsic properties of neural control mechanisms
are the presence of time delays and random, uncontrolled
fluctuations (‘‘noise’’). The interplay between noise and
time-delayed control mechanisms can lead to the appear-
ance of new phenomena that themselves may be beneficial
for neural function. For example, state-independent (‘‘ad-
ditive’’) noise can stabilize neural control by postponing
bifurcations [1], result in noise-induced switching be-
tween coexistent attractors [2] and even stochastic reso-
nance [3]. Considerably less attention has been paid to the
possible effects of parametric, i.e., state-dependent, noise
on neural function. Variations in parameters can have
larger effects on stability than additive noise [4].

An often overlooked limitation of time-delayed feed-
back for control is that corrective responses to perturba-
tions do not occur until a time � after the perturbation
occurs. This means that, for an attractor with a finite
basin of attraction, perturbations could cause destabiliza-
tion before feedback had time to respond. Since time
delays in physiological systems range from milliseconds
to days [5], an important question is how can control be
maintained on time scales shorter than the delay? Para-
metric noise may provide one solution to this problem. In
particular, stochastic or chaotic forcing of a control pa-
rameter across a stability boundary produces on-off in-
termittency [6]. This stochastic form of intermittency has
been observed in a variety of mathematical models [6]
and in specialized experimental paradigms [7]. Here we
demonstrate that on-off intermittency also occurs in sto-
chastic dynamical systems with retarded variables. The
importance is that corrective movements occur on all
time scales including those shorter than the delay.

A situation in which overcoming the limitations of
delayed feedback becomes critically important to the
nervous system is the maintenance of balance: even mo-
mentary miscalculations can result in a fall. A balancing
task that is amenable to analyses is stick balancing at the
fingertip [Fig. 1(a)] [8]. The crucial role played by time-
0031-9007=02=89(15)=158702(4)$20.00
balance than shorter ones: once the stick is sufficiently
long, its rate of movement becomes slow relative to the
time required by the nervous system to make corrective
movements. For an inverted pendulum stabilized by time-
delayed feedback, it is possible that the upright position
can be stable for certain parameter choices ([9] and this
Letter). Parametric noise is an important component of a
motor control loop [10]. Thus, the two properties most
essential for the occurrence of on-off intermittency, para-
metric noise and a stability boundary, are present in the
task of stick balancing.

The movements of a stick balanced at the fingertip in
three dimensions can be monitored noninvasively with
high precision [Fig. 1(a)] [11]. During stick balancing, the
wrist and fingers are held rigid and the movements
occur at the shoulder and elbow (flexion-extension and
abduction-adduction). The excursions made by the hand
are approximately fivefold larger than those made by the
tip of the stick. Light sticks cannot be balanced with the
eyes closed [12]. Thus, it is likely that visual estimation of
the vertical displacement angle, �, of the balanced stick is
a primary sensory input. The quantity �z=l is equal to
cos� , where �z is the difference in the vertical coordinate
of the upper and lower ends of the stick and l is the stick
length. For a 39 and a 62 cm stick, �z ranges between,
respectively, 0.19–1.95 cm and 0.12–1.24 cm (spatial
resolution of the motion analysis system is 0.005 cm
when data is collected at 120 Hz).

Figure 1(b) shows the fluctuations in �z=l as a function
of time for a single realization. The fluctuations in �z=l
exhibit the following characteristics: (i) periods in which
small fluctuations occur alternate with shorter periods
characterized by larger changes; (ii) the baseline for the
fluctuations is not the upright position; i.e., most of the
time the balanced stick is slightly deviated from
the vertical; and (iii) the power spectrum for the fluctua-
tions contains two scaling regions: one with slope � 1

2 and
another with slope �2:5 [solid lines in Fig. 1(c)]. The
 2002 The American Physical Society 158702-1



FIG. 1 (color online). (a) Stick balanced at the fingertip.
(b) Temporal series for �z

l for a 62 cm stick balanced at the
fingertip. The data was sampled at 120 Hz. The horizontal line
depicts the threshold position at 1.0005 times the mean value.
(c) Log-log plot of the power spectrum for the fluctuations in
�z
l . It is characterized by two power law regimes with expo-

nents close to � 1
2 (upper line) and �2:4 (lower line).

(d) Normalized laminar phase probability distribution, P��t�.
The triangles are calculated from a single realization and the
circles represent the mean distribution obtained from 48 real-
izations. The normalization of the P��t� is done to permit
comparison between different realizations. The dashed line
represents a power law with exponent � 3

2 .
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A � 1
2 scaling law is expected to occur in the power

spectra of systems that exhibit on-off intermittency [14].
To further explore this possibility, we choose a threshold
[horizontal line in Fig. 1(b)] and measured the time
intervals, �t, between the occurrence of corrective move-
ments, i.e., fluctuations that cross the threshold in the
upward direction. These time intervals are referred to as
the laminar phases. Figure 1(d) shows a double log plot of
the normalized probability of having laminar phases of
length �t, P��t�. The linear relationship over more than
two decades implies that the fluctuations in � are gov-
erned by a scaling law with exponent � 3

2 (identical
results were obtained for four subjects). This scaling is
a characteristic of on-off intermittency [6,7]. The same
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result was obtained for stick lengths between 39–150 cm
and for other choices of the threshold, provided that it was
placed in such a way that there were sufficient crossings to
permit good statistics.

The time delay was estimated from the cross correla-
tion between the movements of the tip of the stick and the
finger to be �100 msec (range of 70–120 msec for five
subjects balancing a 62 cm stick). This delay is consistent
with that estimated for other manual tracking tasks under
visual feedback [15]. Thus � 98% of the times between
corrective movements are shorter than the latency for the
neural reflex that controls stick balance. The slight de-
parture from the scaling law for the larger ��t� likely
reflects the influence of additive noise [16]. However,
since the effects are small and enter for ��t� larger than
the delay, we do not consider additive noise further in
this study.

We investigated a simple model for the stabilization of
an inverted pendulum with time-delayed feedback in the
presence of parametric noise [17]. An inverted pendulum
of mass m and inertia moment I � 1

3ml2 moves under the
action of three different forces, namely: its weight m~gg,
friction ~FF�, and a restoring force applied by the hand
which depends on the angular deviation at time t� �,
~FF���t� ���. Determining the net torque acting on the
stick results, after proper delay normalization, in the
following delay differential equation

��� � � _�� � q sin�� cF���t� 1�� � 0;

where � � 3�
m �, q � 3g

l �
2, and c � 3

ml �
2. The ‘‘�’’ sign is

because we have taken � � 0 to be the upright position.
Next we expand

cF���t� 1��� R0��t� 1� � R1
_���t� 1� � . . .

and take into consideration only the linear term drooping
the linear derivative. It is important to note that the effect
of the hand movement is not just that of changing � but
also the pendulum‘s suspension point. This can be mod-
eled by introducing a random force in the parameter of
the restoring force, i.e., R�t� � R0 � ��t�, thus we obtain

��� � � _�� � q sin�� R�t���t� 1� � 0; (1)

where ��t� is a Gaussian white noise and R0 is an adjust-
able parameter.

Figure 2(a) shows the stability diagram for (1) as a
function of R0 and �. Choices of R0 and � within the
crescent-shaped region result in a stabilized inverted
pendulum. On the unstable side of the boundary, the
mode of escape to infinity differs between different re-
gions of parameter space: outside the upper (straight)
stability boundary there is a slow oscillatory escape
[Fig. 2(b)]; outside the lower (convex) stability boundary
there is rapid and randomlike escape [Fig. 2(e)]. Time
series that most closely resembled those observed for
158702-2
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FIG. 3. Log-log plot of the (a) power spectrum characterized
by two power law regimes with exponents close to � 1

2 (upper
line) and �2:4 (lower line) and (b) laminar phases distribution
for (1) for three different values of the total number of laminar
phases, from top to bottom: 3	 106, 2	 106, and 106. Nu-
merical integration was performed using an Euler algorithm
with a step size of 10�3. The initial integration time of 50� was
discarded and (1) was further integrated > 107� to obtain
the data to calculate (a) and (b). Parameter values for the
simulations were � � 0:07 sec, R0 � 0:226981, � � 0:13,
and � � 100.
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FIG. 2. (a) Stability domain of (1) in the deterministic situa-
tion computed as follows: For each pair �R0; ��, (1) was inte-
grated using an Euler algorithm with step size h � 10�3 an
initial condition ��s� � 0 for s 2 �0;���. We assumed that the
system escaped whenever ��t� > �

2 for t
h < 223; otherwise, we

assumed that the parameter pair belonged to the stability
domain. The stability boundary determined in this way is
expected to approximate the true stability boundary for t !
1; i.e., the true stability domain is likely smaller than shown.
Representative time series for the parameter choices corre-
sponding to the solid symbols in (a) are shown, respectively,
from top to bottom, in (b), (c), (d), and (e). Parameter values
are indicated on the axis of (a).
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stick balancing [Fig. 1(b)] occurred when R0 and � were
chosen to be close to the lower stability boundary
[Fig. 2(d)].

The power spectrum and log-log plot for the laminar
phases for (1) are shown in Fig. 3 [parameter choices
correspond to Fig. 2(d)]. All of the principle features of
the dynamics observed for stick balancing are repro-
duced, namely: (i) a time series with laminar phases
resting on a baseline slightly displaced from vertical
[Fig. 2(d)]; (ii) a power spectrum exhibiting a small
region of ��1

2 scaling and a larger region of ��2:5
scaling [Fig. 3(a)]; and (iii) threshold crossings that ex-
hibit � 3

2 scaling [Fig. 3(b)]. The slow convergence of the
log-log plot for the laminar phases [Fig. 3(b)] reflects
the influence of critical slowing down phenomena due to
the proximity of the dynamical system to the stability
boundary. For numerical reasons, we performed the cal-
culations using a small delay (� � 70 msec) and a choice
of R0 on the stable side of the lower stability boundary;
i.e., the stick does not fall. In order to achieve balance
times resembling those observed experimentally, it is
necessary to choose these parameters closer to the bound-
ary. Thus, the observations in Figs. 1–3 strongly argue
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that in parameter space the neural control for stick bal-
ancing is placed to be very near, or perhaps on, a stability
boundary.

The limitations of time-delayed feedback for main-
taining control in the presence of rapid, random pertur-
bations have received little attention. Our observations
suggest that, at least for stick balancing, the nervous sys-
tem has an elegant solution to this problem. Maneu-
verability is increased by tuning parameters to place the
control system very close to instability; instability is also
employed, for example, in the design of high perform-
ance aircraft [18] and walking toys [19]. Near a stability
boundary parametric noise results in corrective move-
ments of the tip of the stick that occur on all time scales
and, in particular, those shorter than the delay (i.e., on-off
intermittency). The beneficial effect of on-off intermit-
tency arises because the fluctuations in � resemble a
random walk for which the mean value of � is approxi-
mately zero; i.e., the balanced position is statistically
stabilized.

Previous investigators have recognized the importance
of closed-loop (i.e., sensory feedback dependent) and
open-loop (i.e., sensory feedback independent, including
noise) control mechanisms for the maintenance of
balance by the nervous system [2,20]. However, our study
is the first to draw attention to the crucial importance of
parametric noise in allowing control to be extended to
time scales shorter than the delay. Moreover, our obser-
vations emphasize that in order to understand control in
noisy dynamical systems with retarded variables it will
158702-3
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be necessary to change the focus from the identification
and characterization of attractors to phenomena that oc-
cur near stability boundaries.
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