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This Letter reports on the experimental implementation of the quantum baker’s map via a three bit
nuclear magnetic resonance quantum information processor. The experiments tested the sensitivity of
the quantum chaotic map to perturbations. In the first experiment, the map was iterated forward and
then backward to provide benchmarks for intrinsic errors and decoherence. In the second set of
experiments, the least significant qubit was perturbed in between the iterations to test the sensitivity
of the quantum chaotic map to controlled perturbations. These experiments can be used to investigate
existing theoretical predictions for quantum chaotic dynamics.
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Chaos is a phenomenon in which nonlinear dynamical
systems exhibit heightened sensitivity to small per-
turbations [1-8]. The study of chaos is computationally
intensive. When direct experiments are not available,
computers can be used to simulate chaotic dynamics and
to calculate the effect of perturbations. But when the
chaotic system is quantum mechanical, simulating its dy-
namics on a classical computer is notoriously difficult:
the computational complexity of the calculation rises
exponentially with the number of degrees of freedom of
the simulated quantum chaotic system and with the accu-
racy to which the simulation is to take place [4,9,10]. If
one can simulate quantum chaos on a quantum computer,
by contrast, the computational complexity rises only
as a small polynomial in the number of degrees of
freedom and in the accuracy [10-12]. Consequently,
quantum computation represents a potentially powerful
technique for investigating quantum chaos. This Letter
reports on an experimental demonstration of a quantum
chaotic map.

Small perturbations to the initial state of a classical
chaotic system typically lead to large changes in behavior.
Two states that are initially close are driven apart at a rate
governed by the positive Lyapunov exponents [1] of the
chaotic dynamics. By contrast, quantum dynamics,
whether regular or chaotic, preserves the overlap between
quantum states and does not drive them apart. Nonethe-
less, quantum chaos can be characterized by the sensitiv-
ity of the time evolution of states to small changes in
the Hamiltonian that governs the chaotic dynamics
[6-8,13,14].

We implement experimentally an approach suggested
by Ballentine and Zibin [13] to explore the correspond-
ence between classical and quantum chaotic dynamics.
We evolve our quantum system forward in time under the
quantum baker’s map, perturb it, and evolve it backward
by the inverse map. The total evolution is then p; — p; =
> OBTA, QBpiQBTA}: OB, where p is the density matrix
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of the system, OB is the unitary transformation corre-
sponding to the quantum baker’s map, and A; are Kraus
operators giving a perturbation whose strength can be
varied. Finally, we compare the final state p, with the
initial state p; for different perturbation strengths. The
sensitivity of the system to the perturbations can be
characterized by the overlap Tr(p;p/).

Our approach also allows for a confirmation of the ideas
of Zurek and Paz [14] who suggest that quantum chaotic
systems, when decohered by their environment, produce
information at a rate equal to their Kolomogorov-Sinai
entropy.

Further applications of our experimental methods
could be used to test the criteria for quantum chaotic
dynamics of Peres and of Schack and Caves. Peres [6,7]
noted that under quantum chaotic dynamics with a slight
perturbation, a state moves apart at an exponential rate
from the same state evolving under the unperturbed
dynamics. Schack and Caves [8] characterized chaotic
dynamics (both classical and quantum) in terms of the
exponential growth of the information required to
specify a state that evolves according to a perturbed
version of the dynamics, a phenomenon they termed
“hypersensitivity to perturbation.”

The quantum information processor used to simulate
perturbed quantum chaotic maps is an NMR quantum
information processor [15,16]. The number of quantum
bits used (three) is sufficiently small that the precision of
the quantum computation can be checked on a classical
computer. Of course, the small number of qubits means
that the simulation could have been performed on a clas-
sical computer. The goal of the research reported here was
to actually simulate quantum chaos on a quantum infor-
mation processor [17]. A further goal of experimental
investigations is to identify practical experimental signa-
tures of quantum chaos.

The classical baker’s map acts on the unit square in
phase space as follows:

© 2002 The American Physical Society 157902-1



VOLUME 89, NUMBER 15

PHYSICAL REVIEW LETTERS

7 OCTOBER 2002

p = p/2; 0<g<1/2,
p=((p+1)/2 1/2=¢g<1.
(D

q =q/2
9 =2q—1

The baker’s map first stretches phase space to twice its
length, while squeezing it to half its height. Then the map
cuts phase space in half vertically and stacks the right
portion on top of the left portion, similar to the way a
baker kneads dough. Because of the stretching and the
cut, the baker’s map is fully chaotic and has two Lyapunov
exponents, * In2. Balazs and Voros [19,20] presented a
quantized version of the baker’s map that reproduces the
behavior of the classical map in the limit i — 0. The
quantum baker’s map is a simple unitary operator which
consists of a quantum Fourier transform (QFT) on half of
the Hilbert space followed by an inverse QFT on the
whole Hilbert space:
—orr-!( @Tez O
0B, = QFT, < 0 QFT, ) 2)

where ¢ is the Hilbert space dimension. The QFT is a
discrete Fourier transform acting on a Hilbert space in the
computational basis and is defined as [21]

<
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The QFT, and hence, the quantum baker’s map, can be
expressed as a sequence of two basic unitary operations,
the Hadamard gate, H;, operating on spin j and the
conditional phase gate, Bj(6), which applies a phase of
0 on spin k if spin j is in state |1). Schack [12] utilized
this decomposition to develop an algorithm for simulat-
ing the quantum baker’s map on a quantum computer. The
three qubit version of the quantum baker’s map is (read-
ing from left to right)

FIG. 1. Gate sequence for the three bit position perturbation.
The top line, bit one, is the most significant bit. The first gate (a
controlled-controlled-NOT or Toffoli gate) flips the most sig-
nificant bit only if the other two bits are |1). The second gate (a
controlled-NOT gate) flips the second bit only if the third bit is a
|1), and the final gate is a NOT on the third bit. This sequence
can be extended to an arbitrary number of qubits. Using
geometric algebra [29], we can break down this sequence
into NMR implementable operators; the Toffoli gate,
ei(’n’/8)(l—o’i—o’?—a’?#—o’ia’%#—o’}a’%+U§U§-a’}0§a’§), the controlled-NOT
gate, /(71— + 7309 and the NOT gate, ¢!(™/21-02),
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where Swapj; is a swap gate between bits j and k. The
second term in Eq. (4) implements a QFT on bits 2 and 3
and the first term implements the inverse QFT on all three
bits [21]. Brun and Schack [11] introduced a simplified
version of the baker’s map and simulated, on a classical
computer, its implementation on a quantum information
processor. In this Letter we implement the complete
baker’s map defined in Eq. (4). Swap gates are done by
relabeling bits.

As noted above, our experimental technique is to apply
the quantum baker’s map, apply a perturbation such as the
position perturbation of Fig. 1, then apply the inverse map.
We began most of our simulations in the pseudopure state
corresponding to the state |000). In general, the perturbed
dynamics of a single state may not be sufficient to com-
pletely characterize the behavior of a map. Here, we take
advantage of the fact that the overlap Tr(p;p,) for the
|000) initial state approaches the average of overlaps for a
complete set of orthogonal initial states in the limit of
small perturbation, as shown in Fig. 2. Thus the overlap
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FIG. 2. Sensitivity of baker’s map to unitary perturbations.
Solid line shows the theoretical overlap Tr(p;p,) versus the
angle of the perturbation rotation on the third bit for the initial
state |000). The dashed curve shows the final state overlap for
the same perturbation averaged over a complete set of ortho-
normal initial states. These curves are calculated by numeri-
cally applying the map and perturbations to the initial state.
For small perturbations the results for the initial state |000) are
very similar to that of a complete set of initial states. Stars
represent the measured overlap Tr(@;0,) for the initial state
|000) where @; is the state of the system after experimental
implementation of the quantum baker’s map followed by the
inverse quantum baker’s map, and @ is the state of the system
after the experimental implementation of the quantum baker’s
map, the rotation perturbation, and the inverse quantum baker’s
map. The drop in overlap relative to the theoretical curve results
from imperfections in the initial experimental state. The inset
plot is the overlap versus the size of the position perturbation
(add 1 through add 4). The baker’s map is much more sensitive
to a position space perturbation than to a rotation perturbation
on the least significant bit.
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Tr(p;p) for the initial state |000) approaches the fidelity
[22,23] of the operation: baker’s map, rotation perturba-
tion, inverse baker’s map. We note that a complete readout
of the state of the system, as done in the present work,
does not scale efficiently with the number of qubits.
Methods for efficient measurement of the overlap are
discussed in [24,25].

An interesting nonunitary perturbation is the applica-
tion of a magnetic field gradient dephasing the least
significant (third) bit. The Hamiltonian of a gradient on
spin j is Hj(z) = e/7\B:/d0o2/)  where 7 is the spins
gyromagnetic ratio. The gradient acts as a rotation of
varying magnitude across the sample. This perturba-
tion looks like decoherence when the signal from the
entire sample is measured, effectively tracing over posi-
tion z.

When simulating a quantized classical map, a natural
perturbation is one with a simple definition in phase
space, such as a displacement in position. The quantum
baker’s map, as defined by Eq. (2), associates the discre-
tized position basis on the unit square [19] with the
computational basis. The smallest possible position per-
turbation in a Hilbert space of dimension N corresponds
to the addition or subtraction of 1(modN) which, for
example, would take the state [000) to [001) or |111),
see Fig. 1. Simulated data in the inset of Fig. 2 shows that,
as expected, the baker’s map is very sensitive to such a
perturbation.

A variation of this perturbation with a simple interpre-
tation in Hilbert space is an x rotation on one bit. A 180°
rotation of the least bit on the [000) state gives the same
output as one step of the position perturbation. The sen-
sitivity of the baker’s map to the o, perturbation may be
examined experimentally by controlling the angle of the
rotation.

The three bit quantum baker’s map was implemented
via NMR using the three carbon-13 spins of an alanine
sample. The resonant frequency of carbon-13 on a
300 MHz spectrometer is approximately 75.468 MHz.
Frequency differences between the spins are 9456.5 Hz
between spins 1 and 2, 2594.3 Hz between spins 2 and 3,
and 12050.8 Hz between spins 1 and 3. Coupling constants
between the three spins are Ji, = 54.2 Hz, J»3 =
35.1 Hz, and Jy3 = —1.2 Hz. Relaxation time 7 for the
three carbon spins in alanine are all longer than 1.5 s,
while the T, relaxation times are longer than 400 ms. The
pulse sequences for realizing the H; and B, gates and the
implementation of the QFT as a sequence of these gates
can be found in [26]. The pulse sequence for the complete
quantum baker’s map was compressed by relabeling bits
instead of performing the swaps explicitly. Readout
was done using quantum state tomography as described
in [22].

To measure the accuracy with which the transforma-
tions were performed, we used the attenuated correlation
measure introduced in [27,28], which is appropriate for
almost fully mixed density matrices:
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Here o is the measured deviation density matrix. This
does not include the large identity term in the actual high
temperature liquid state, but does include a small,
uniquely determined amount of the identity operator
necessary for reconstructing a positive state operator.
The amount of identity included is fixed for each set of
experiments [22,28]. If the theoretical and experimental
deviation density matrices were correlated C = 1, if they
were uncorrelated C = 0, and if they were anticorrelated
Cc=-1

The first experiment consisted of two iterations of the
quantum baker’s map, a forward iteration followed by the
inverse of the map, starting from the |000) pseudopure
state. The attenuated correlation, C, of the implementa-
tion of the forward map is 0.76, and for the forward
followed by the inverse, 0.56. The factor in parentheses
in the attenuated correlation, Eq. (5), measures the cor-
relation between theoretical and experimental density
matrices without accounting for reduction in signal over
the course of the experiment. This gives a crude measure
of the map’s accuracy in the absence of decoherence. For
the forward map this unattenuated correlation is 0.93 and
for the forward followed by the inverse, 0.90. Since the
experiment was done on the |000) pseudopure state, we
expect the final state of the system to be that same state.
The density matrix of the spin system after the forward
and inverse iteration is shown in Fig. 3.

Another set of experiments were done to explore the
dynamics of the baker’s map under perturbations as de-
scribed above. The first perturbation experimentally
tested consisted of a dephasing gradient on the third, least
significant, bit. This can be done by applying a gradient
which dephases all of the bits. A 7 pulse is then done on
the first two spins, followed by another gradient pulse of
the same strength. The 7 pulse causes the dynamics of the
first gradient pulse to be undone by the second gradient
pulse; hence, the effect of the gradient is only seen by the
third bit (a second 7 pulse is done on the first two spins to
put them back in their original state). We measured C =
0.78 for the state after the gradient and C = 0.65 for the
state after the inverse map. For these correlation values,
the loss of magnetization due to the gradient is taken into
account in the normalization of Q;,;,. The final state
(after the gradient and inverse map) shows the generation
of one bit of entropy as seen by the equilibration of
the [000) and |001) populations, as displayed in Fig. 3.
This is consistent with the Paz-Zurek model for the effect
of decoherence on a quantum chaotic map: when deco-
hered, the map produces one bit of entropy per iteration,
an amount equal to the Kolmogorov-Sinai entropy of
the map.

In a final set of experiments rotational perturbations of
/32, w/16, /8, and /4 on the third (least significant)
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FIG. 3 (color online). Real part of experimental density ma-
trices. The top left hand corner shows the input [000) pseudo-
pure state. One iteration of the baker’s map on this state leads to
the center density matrix. Then the inverse map is applied (top
right figure) bringing the bits back to the input |000) state. In
the second experiment, a gradient is applied to the third, least
significant, bit after the forward iteration of the map (bottom
left figure) followed by the application of the inverse map
(bottom right figure).

bit were applied between the forward and inverse itera-
tions of the baker’s map. For these experiments C ranged
between 0.52 and 0.53. In Fig. 2 we plot the overlap,
Tr(@;0y), of the experimental perturbed and unperturbed
density matrices and compare it to theoretical predictions.

In conclusion, we describe the implementation of a
chaotic map on a quantum system, a three qubit quantum
information processor. In addition, we have explored two
perturbations and examined their effects on the dynamics
of the map. For small quantum systems it is more difficult
to find easily implementable perturbations (one or two bit
rotations) that are largely noncommuting with the map.
The implemented quantum baker’s map is not sensitive to
the least bit rotation perturbation. However, it is sensitive
to other perturbations, such as the described position
perturbation. Experiments such as these establish a foun-
dation for further experimental investigations of quan-
tum chaotic dynamics and the exploration of suggested
theoretical approaches. For example, the hypersensitivity
to perturbation suggested by Schack and Caves should be
evident even on a small Hilbert space, with only a few
iterations of a chaotic map [11]. To eventually observe a
characteristic such as the Peres criterion [6] will require a
much larger Hilbert space and many more iterations of
the map. We believe the experiments performed are a first
step towards a more thorough experimental investigation
of these questions.

The authors thank M. A. Pravia and E. M. Fortunato for
help with experimental difficulties and J. P. Paz for help-
ful discussions. This work was supported by DARPA/
MTO through ARO Grant No. DAAG55-97-1-0342 and
by the Cambridge-MIT Institute.
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