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Anomalous Thermal Conductivity of Frustrated Heisenberg Spin Chains and Ladders
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We study the thermal transport properties of several quantum-spin chains and ladders. We find
indications for a diverging thermal conductivity at finite temperatures for the models examined. The
temperature at which the nondiverging prefactor ��th��T� peaks is, in general, substantially lower than
the temperature at which the corresponding specific heat cV �T� is maximal. We show that this result of
the microscopic approach leads to a substantial reduction for estimates of the magnetic mean-free path
� extracted by analyzing recent experiments, as compared to similar analyses by phenomenological
theories.
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where L is the number of units along the chain. We will convergence factor.
Introduction.—The nature of thermal transport in sys-
tems with reduced dimensions is a long-standing problem
and has been studied intensively in classical [1] systems
either by direct numerical out-of-equilibrium simulations
[2] or by investigation of soliton-soliton scattering pro-
cesses [3]. There has been, on the other hand, considerably
less progress for quantum systems. Huber, in one of the
firsts works on the subject [4], evaluated the thermal con-
ductivity ��T� for the Heisenberg chain with an equation-
of-motion approximation and found a finite ��T�, a result
which is, by now, known to be wrong. It has been shown
recently [5] that the energy-current operator commutes
with the Hamiltonian for the spin-1=2 Heisenberg chain.
The thermal conductivity is consequently infinite for this
model. The intriguing question, ‘‘Under which circum-
stances does an interacting quantum system show an
infinite thermal conductivity?’’, is until now completely
open, the analogous question for classical systems being
intensively studied [1].

A second motivation to study ��T� for quantum-spin
systems comes from experiment. An anomalous large
magnetic contribution to � has been observed [6] for the
hole-doped spin-ladder system Sr14�xCaxCu24O41. For
Ca9La5Cu24O41, which has no holes in the ladders, an
even larger thermal conductivity has been measured [7]
raising the possibility of ballistic magnetic transport
limited only by residual spin-phonon and impurity scat-
tering. There is, however, until now no microscopic cal-
culation for the thermal conductivity of spin ladders.

In this Letter, we present a finite-size analysis of the
thermal conductance in Heisenberg J1 � J2 chains and
ladders suggesting ballistic thermal transport in these two
families of spin models. Following this result, we propose
a possible scenario that would account for a number of
anomalies found in the thermal conductivity in spin sys-
tems. We apply these ideas to the case of Ca9La5Cu24O41,
obtaining good agreement with recent experimental
measurements.

Models.—We consider quasi-one-dimensional systems
for which the Hamiltonian takes the form H �

P
L
x�1 Hx,
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consider two models, the isotropic Heisenberg chain with
dimerized nearest and homogeneous next-nearest neigh-
bor exchange couplings,

H�ch�
x � Jf�1 � ���1�x�Sx 	 Sx�1 � �Sx 	 Sx�2g;

and the two-leg Heisenberg ladder:

H�lad�
x � Jk�S1;x 	 S1;x�1 � S2;x 	 S2;x�1� � J?S1;x 	 S2;x:

H�ch� has been proposed to model the magnetic properties
of the spin-Peierls compound CuGeO3. The nonfrustrated
dimerized Heisenberg chain (� � 0) models the mag-
netic behavior [8] of �VO�2P2O7. Ca9La5Cu24O41 contains
doped spin chains and undoped spin ladders [7], described
by H�lad�.

Method.—Our goal is to make a connection between
the microscopic transport properties of the low dimen-
sional models presented above and the experimental
measurements of thermal conductivity mentioned in the
introduction.

The thermal conductivity is defined as the response of
the energy-current density jEx to a thermal gradient jEx �
��rT, and it has units of ��� � W

K md�2 , where d is the
dimension (d � 3 for experiments). The specific form of
the energy-current associated with a given Hamiltonian
is determined by the continuity equation for the energy
density, _HHx �r 	 jEx � 0, which leads via r 	 jEx �
�jEx�1 � jEx �=c to [9]

�Hx;Hx�1� � �Hx;Hx�2� � �Hx�1; Hx�1� �
i �h
c
jEx ;

where c is the lattice constant along the chain direction.
In the absence of applied magnetic fields, spin inversion

symmetry holds, and the Kubo formula for � �
lim!!0 ��!� reduces to [4]

� � lim
!!0

�2

L

Z 1

0
dtet�i!�s�hJE�t�JEi; (1)

where JE �
P

x jEx is the total energy current, � �
1=�kBT� is the inverse temperature, and s ! 0 the usual
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FIG. 1 (color online). ��th�, as defined by Eq. (2), for the
Heisenberg chain as a function of temperature. Inset: Data
for L � 5–14, in comparison with the Bethe ansatz result
[10] (full line). Main panel: Results using Eq. (5), with Leff �
�L0 � L1�=2. We note that the position of the maximum in ��th�

can be determined confidently with the averaging procedure.
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We will examine here the possibility of infinite intrin-
sic thermal conductivity. For such a system heat transport
is ballistic and energy is transported without dissipation.
As an example, we consider the XXZ chain (H�ch� with
� � 0 � � and a spin anisotropy). The total thermal
current commutes with the Hamiltonian in this case [5]
and the current-current correlation function is therefore
time independent. Equation (1) reduces then to the static
expectation value ��! � 0� � �2h�JE�2i=�Ls�, a quantity
which can be evaluated by the Bethe ansatz [10].

In general, we have �JE;H� � 0, but the thermal trans-
port will be ballistic if

��th� �
�2

ZL

X
m;n;En�Em

e��Em jhmjJEjnij2 (2)

is finite in the thermodynamic limit L ! 1. The thermal
conductivity � � ��th�=s then diverges for s ! 0; as it
does for the XXZ chain.

In reality, spin Hamiltonians such as H�ch� and H�lad�

are coupled to an external environment, e.g., to phonons
or impurities. Here we consider the case where this cou-
pling is small. This coupling will then result in a finite
external lifetime  � 1=s for the eigenstates of the spin
model [which is assumed to be energy independent in
Eq. (1)]. Using the relation � � vs in between the ex-
ternal mean-free path �, the spin-wave velocity vs, and  ,
we propose

� � ��th�  � ��th� �
vs

; (3)

to hold for the thermal conductivity �.
Let us discuss the relation of Eq. (3) to the usual

phenomenological formula [11] (here in one dimension)

��ph� � cV vs�; (4)

where cV is the specific heat. When applied in order to
analyze experimental data, the microscopic Eq. (3) will,
in general, yield different values for the magnetic mean-
free path �. On the other hand, we might expect Eq. (4) to
hold at low temperature for the Heisenberg chain in the
gapless phase, when the Luttinger-liquid quasiparticles
are well-defined and a Boltzmann approach is justified.
Consequently, we expect ��th� �=vs � cVvs� in this case,
i.e., we expect ��th�=cV � v2

s in the limit T ! 0. All three
quantities in this equation (��th�, cV , and vs) can be
computed by Bethe ansatz for the XXZ chain. One finds
that this equation is exact [10] in the limit T ! 0.

Numerics.—The computation of ��th��T� demands the
whole spectrum of the Hamiltonian, restricting the maxi-
mum lattice size and a careful finite-size analysis is
required. In general, one finds, e.g., for the XXZ model
for which the exact Bethe ansatz result is known [10], that
the ��th� in chains with odd (even) number of sites chains
is an upper (lower) bound to the exact result. The value of
��th��T� decreases (increases) for chains with an odd
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(even) number of sites when the lattice is enlarged. This
observation has led us to consider the average,

��th��Leff� �
L0��th��L0� � L1��th��L1�

L0 � L1
(5)

of finite-size data, where L0 � 2i, L1 � 2i� 1, and
Leff � �L0 � L1�=2. We find that ��th��Leff� converges to
the thermodynamic limit somewhat faster than taking
the limit for and even (or odd) number of sites only, see
Fig. 1. This average technique is reminiscent of the
boundary-condition integration technique [12] for exact
diagonalization studies.

The situation is similar when boundary conditions are
changed from periodic to antiperiodic and for the ladders
when the number of rungs changes from odd to even. We
also find that (5) produces excellent results when applied
to the specific heat, as illustrated in Fig. 2, where we
compare the exact diagonalization data for ladders with
quantum Monte Carlo (QMC) results [13].

Results—After these technical remarks, we discuss
now the exact diagonalization results for the temperature
dependence of ��th�. The general features in all the models
studied are as follows: (i) a finite value of ��th� at any finite
temperature that does not vanish when the extrapolation
to infinite lattice size is taken; (ii) a single maximum ��th�

max

at an intermediate temperature Tmax��� smaller than the
maximum in the specific heat Tmax�Cv�; (iii) the high
temperature regime follows, in general, the law
C�L�=T2, as expected from Eq. (2).

The results for H�lad� are presented for J? � 2Jk in
Fig. 2. We notice that the results for the specific heat are
already converged nicely, albeit the small effective chain
length used. We believe that the results for ��th� shown in
156603-2
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FIG. 2 (color online). Temperature dependence of ��th� and
the dimensionless specific heat for ladders with twisted bound-
ary conditions and J? � 2Jk. Both magnitudes are computed
using the average procedure (5) described in the text. The
specific heat for a 2 � 100-ladder computed with QMC is
plotted for comparison (squares). Inset ��th� for L � 3, 5, 7
(from bottom up) and L � 4, 6 (from top down) in the low-
temperature region.
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Fig. 2 to be accurate to about 10%, enough to allow a
detailed analysis of the experimental data which we will
perform further below. In the inset of Fig. 2 we present a
blowup for the data for ��th� at low temperatures for L �
3; . . . ; 7. We note the systematic increase of ��th� with
increasing L for the odd values L � 3, 5, 7, indicating a
finite value in the thermodynamic limit. The even values
L � 4, 6 seem to constitute upper bounds to ��th�.

In Fig. 3, we present the results for H�ch�, � � 0:35 and
� � 0. We have also studied the dimerized phase with
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FIG. 3 (color online). ��th� and dimensionless specific heat for
the frustrated Heisenberg chain with � � 0:35 and different
lattice sizes L � 8, 10, 12, 14, the arrows indicate increasing L,
compare [9]. Inset : Finite size analysis (L � 6–14) of the high
temperature residue C�L� defined as ��th� � C�L�=T2 at T � J
for different values of �.
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� > 0 and found similar behaviors. The maximum value
of ��th� is nearly size independent for L � 8–14. The raise
of ��th� with increasing system size L (as indicated by the
arrows in Fig. 3) in the low-temperature regime, is con-
sistent with the notion of a finite ��th� in the thermody-
namic limit.

The way finite-size chains approach the L ! 1 limit is
almost identical for frustrated chains and the exactly
solvable � � 0 case, as exemplified by the size depen-
dence for the prefactor of the leading 1=T2 term presented
in the inset of Fig. 3, showing the reliability of the finite-
size analysis. We can conclude that the frustration pro-
duces a substantial drop in the extrapolated finite value of
the prefactor.

Analysis.—Comparison with experimental results for
the thermal conductivity ��exp� can be made using the
dimensional analysis:

��exp� �
kBJ
�hc

�
Ncc

3

abc

��
�
c

��
Jc
�hvs

�
~���th�; (6)

where the quantities in the brackets are dimensionless.
~���th� is the dimensionless thermal conductance (2) which
we will evaluate by exact diagonalization. a, b, and c are
the lattice constants (the chains run along the c direction)
and Nc is the number of chains per unit cell. Note that
��c��

Jc
�hvs
� � �J �h � and (6) can be used to extract the lifetime  

(in units of the coupling constant J) directly by compari-
son with the experimental ��exp�.

We now analyze the experimental data [7] for
Ca9La5Cu24O41. A quantitative good description of the
magnetic excitations in La9La5Cu24O41 can be obtained
by H�lad� with the inclusion of an additional ring-
exchange term [14] (a 15% correction) and J? ’ Jk
[14,15]. Here we disregard the possible ring-exchange
term and use J � J? � Jk � 832:6 K, which we ex-
tracted by fitting the magnetic contribution [7] ��exp��T�
by 444:2=�1:0 � 0:093 exp�419:6=T� � �T=156:4�2� (a
very good fit at all temperatures, see inset of Fig. 4).
The gap ' for the isotropic Heisenberg ladder is [16] ' �
0:504J?, which leads for Ca9La5Cu24O41 to J �
419:6=0:504 K � 832:6 K.

Using the appropriate lattice constants and Nc � 14
(rungs per unit cell [17]) we used Eqs. (5) and (6) for
2 � 6 and 2 � 7 ladders in order to extract the spin-
environment relaxation time  , see Fig. 4. We find the
following for the lifetime  (in units of the coupling
constant J):  �T� �h

J ’ 7�725
T � �561

T �2�. The assumption of a
weak spin-environment coupling entering Eq. (3) is
therefore justified in the experimental relevant tempera-
ture regime. The lifetime is, to give an example, 132 times
larger than the coupling constant J at T � 150 K, leading
to an external broadening of the energy levels of only
1=132 � 0:76%, in units of J.

To estimate the effective mean-free path, we use
��T� � �vvs�T� �T�, where we have used for �vvs the thermal
156603-3
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FIG. 4 (color online).  �T� (right scale) and ��T� (left scale)
for Ca9La5Cu24O41 extracted using Eq. (6). The experimental
data by Hess et al. [7] is shown in the inset (filled circles)
together with an analytic fit (solid line) discussed in the text.
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expectation value of the magnon velocity within the
independent-triplet model:

�vvs �
1

Z

Z
dk"0�k�n�"�k�� �

1

Z

Z '2

'
d"n�"�;

where Z �
R
dkn�"�k�� is the partition function and

n�"�k�� � 3=� exp��"�k�� � 3�. We approximated the
one-magnon dispersion "�k� by 2 "2�k� � �'2 � '2

2� �
�'2

2 � '2� cos�k�. For J? � Jk, we have [16] that '2 �
3:8'. In the low-temperature limit, �vvs�T� �

����
T

p
holds

and the mean-free path ��T� is therefore less divergent
at low T than the relaxation-time  �T� [see Fig. 4]. At very
low temperature, we expect impurity scattering to be-
come relevant and ��T� to plateau off.

Discussion.—Our results for the mean-free length ��T�
for Ca9La5Cu24O41 obtained by the microscopic formula
(3) are substantially smaller than the one obtained using
(4). At T � 100 K, Hess et al. [7] estimated a large � �
3000 *A, in contrast to our result ��100� � 176 *A. This is,
in a certain sense, surprising, since the effective � ob-
tained from (4) might be thought to contain additional
spin-spin scattering. Physically, the reason for our smaller
mean-free path stems from the fact that ��th��T� peaks at
substantially smaller temperatures than cV�T�, see Fig. 3.
We note that all excitations contribute to cV on an equal
footing, but that magnetic excitations near the bottom of
the one-magnon band seem to contribute dominantly to
the thermal conductivity, leading to a substantial reduc-
tion of the temperature where ��th��T� is maximal, with
respect to cV�T�.

Conclusions.—We have presented a microscopic ap-
proach of thermal transport in quasi-one-dimensional
156603-4
spin models. For several models, we find indications for
a diverging thermal conductivity. A finite thermal con-
ductivity is obtained when couplings to external degrees
of freedom are taken into account with the relaxation-
time approximation. We have analyzed recent experi-
ments for spin-ladder compounds and found only weak
spin-environment coupling for the ladder compounds,
which decreases fast with decreasing temperature. Our
estimates for the mean-free length turned out to be sub-
stantially smaller than previous estimates using simple
phenomenological formulas. These results highlight the
importance of microscopic theories for transport in
quasi-one-dimensional quantum-spin systems.
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