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Dynamical Symmetries in Kondo Tunneling through Complex Quantum Dots
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Kondo tunneling reveals hidden SO�n� dynamical symmetries of evenly occupied quantum dots. As
is exemplified for an experimentally realizable triple quantum dot in parallel geometry, the possible
values n � 3; 4; 5; 7 can be easily tuned by gate voltages. Following construction of the corresponding
on algebras, scaling equations are derived and Kondo temperatures are calculated. The symmetry group
for a magnetic field induced anisotropic Kondo tunneling is SU�2� or SO�4�.
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3; 4; 5; 7 and the corresponding Kondo temperatures are FIG. 1. Triple quantum dot in parallel geometry.
While theoretical predictions of the Kondo effect in
tunneling through quantum dots (QD) under strong
Coulomb blockade conditions [1] have been confirmed
[2], it should be born in mind that representing a real
nano-object by a single localized spin S � 1=2 is inade-
quate. Ubiquitous low-lying spin excitations in few-elec-
tron systems cannot be ignored. Even in ‘‘classical’’
planar QDs formed in GaAs=GaAlAs heterostructures,
the Kondo physics is much richer than that employed in
analyzing the seminal experiments [2].

The purpose of the present work is to demonstrate that
if low-lying spin excitations are properly incorporated,
the exchange Hamiltonian of quantum dots with even
occupation N unveils an unusual dynamical SO�n� sym-
metry, and to suggest experiments for its elucidation.
Analysis of relatively simple QD systems indicates the
possible emergence of higher symmetries. For example,
Kondo tunneling may be induced by external magnetic
field in planar QD [3], since occurrence of low-lying
triplet exciton above singlet ground state leads to an
SO�4� symmetry. Because of Zeeman splitting, it is re-
duced to SU�2�, leading to the Kondo effect in strong
magnetic field. A similar scenario may be realized in
vertical QDs [4] where now the Larmor (instead of the
Zeeman) effect comes into play. Another example is a
double quantum dot with N � 2 which is a spin analog
of a hydrogen molecule H2. Here the low-lying singlet/
triplet manifold possesses the symmetry SO�4� of a ‘‘spin
rotator’’ [5,6].

The central (and fundamental) question is the follow-
ing: Is the physics of Kondo tunneling through complex
quantum dots intimately related with hidden SO�n� sym-
metries? The answer given below is affirmative.
Moreover, these symmetries can be experimentally real-
ized and the specific value of n can be controlled by gate
voltage and/or tunneling strength. To be concrete, the
analysis is carried out below for a triple quantum dot
(TQD) in a parallel geometry with N � 4 as a neutral
ground state (see Fig. 1). It is shown to exhibit an SO�n�
symmetry, and the relations of tunneling strengths Vl;r
and gate voltages Vgl; Vgr with the possible values n �
0031-9007=02=89(15)=156602(4)$20.00
explicitly demonstrated. This example is simple enough to
allow the construction of the corresponding on algebras
and solving the poor-man scaling equations for obtaining
the Kondo temperatures. At the same time, it paves the
way for treating more general QD structures with an
arbitrary scheme of low-lying spin excitations.

Initially, the TQD in Fig. 1 is treated within an
Anderson-type model with bare level operators d�i, en-
ergies "i, charging energies Qi, and gate voltages Vgi with
i � l; c; r for left, center, and right dots. The figure also
defines interdot hopping (Wa) and tunneling matrix ele-
ments (Va) where the notation a � l; r and �aa � r; l is used
ubiquitously hereafter. It is useful to shift the energies as
�i � "i � Vgi which can be experimentally manipulated.
Setting the Fermi energy in the leads to be "F � 0, the
pertinent ‘‘Kondo limit’’ is determined as 0 > �a � �c
and 0< �a �Qa � �c �Qc [5]. The capacitive interac-
tion between the three dots is tuned in such a way that, in
the absence of interdot hopping, the neutral ground state
has the occupation, na � nc � 1; n �aa � 2, while five elec-
tron states cost much energy and are discarded.

Next, the isolated dot Hamiltonian is diagonalized in
the Hilbert space which is a direct sum of three and four
electron states, j�i and j�i, using Hubbard operators
X�� � j�ih�j (� � �;�) [7]. The four particle states
j�i � �j�li; j�ri� exhaust the lowest part of the spec-
trum, an octet consisting of two singlets jSli; jSri, and
two triplets jTli; jTri. Just above it, there is a charge
transfer exciton jexi. The corresponding energies are
 2002 The American Physical Society 156602-1
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FIG. 2. Scaling trajectories resulting in an SO�5� symmetry
in the SW regime.
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ESa � �c � �a � 2� �aa �Q �aa � 2Wa�a;

ETa � �c � �a � 2� �aa �Q �aa ;

Eex � 2�l � 2�r �Ql �Qr � 2Wl�l � 2Wr�r:

(1)

where �a � Wa=�a � 1 ��a � Qa � �a � �c�. Finally,
tunneling operators in the bare Anderson Hamiltonian
are replaced by a product of number changing Hubbard
operators X�� and a combination ck� � 2�1=2�ck�s �
ck�d� of lead electron operators (k � momentum, � �
spin projection, and s; d stand for source and drain).

With these preliminaries, the starting point is a gener-
alized Anderson Hamiltonian describing the TQD in
tunneling contact with the leads,

HA �
X

k�b�s;d

�kbc
y
k�bck�b �

X
����

E�X
��

�

�X
��

X
k�a

V��
�a c

y
k�X

�� � H:c:
�
; (2)

with dispersion �kb of electrons in the leads and V��
�a �

Vah�jd�aj�i. The Kondo effect at T > TK is unraveled by
employing a renormalization group (RG) procedure [7,8]
in which the energies E� are renormalized as a result of
rescaling high-energy charge excitations. Our attention,
though, is focused on renormalization of ESa ; ETa (1).
Since the deep central level �c as well as the tunnel
constants are irrelevant variables [5,8], the scaling equa-
tions are

#dE�=d lnD � ��: (3)

Here 2D is the conduction electron bandwidth, �� are the
tunneling strengths,

�Ta � #%0�V2
a � 2V2

�aa�; �Sa � &2
a�Ta ; (4)

with &a �
������������������
1 � 2�2

a

p
and %0 being the density of states at

"F. The scaling invariants for Eqs. (3),

E
� � E��D� � #�1�� ln�#D=���; (5)

are tuned to satisfy the initial condition E��D0� � E�0�
� .

Equations (3) determine four scaling trajectories E��D�
for two singlet and two triplet states. Note that the level
Eex is irrelevant, but admixture of the bare exciton (na �
n �aa � 2) in the singlet states is crucial for the inequality of
tunneling rates �Ta > �Sa (cf. [5,6]). As a result, the
energies ETa�D� decrease with D faster than ESa�D�, so
that the trajectories ETa�D;�Ta� intersect ESa�D;�Sa� at
certain points D�a� � D�a�

c . This level crossing may occur
either before or after reaching the Schrieffer-Wolff (SW)
limit where E��D� �D and scaling terminates [8].
Hidden dynamical symmetries affect the Kondo tunnel-
ing most effectively when the scaling trajectories cross
near the SW boundary E��Dc� �Dc. Various patterns of
occasional degeneracy may arise depending on the ex-
perimentally tunable initial conditions (1) and tunneling
strengths (4). These, in turn, determine the pertinent
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SO�n� symmetry of the resulting spin excitations (see
below). An example of this scenario is shown in Fig. 2.

The above Haldane RG procedure brings us to the SW
limit [9], where all charge degrees of freedom are
quenched. By properly tuning the SW transformation
eiS the effective Hamiltonian H � eiSHAe�iS is of the
s-d type [7]. However, unlike the conventional case [9] of
doublet spin 1=2 we have here an octet � � f�l;�rg �
fSl; Tl; Sr; Trg, and the SW transformation intermixes all
these states. To order O�jVj2�, then,

H �
X
�;a

E�a
X�a�a �

X
a

JTaSa � s� JlrP̂P
X
a

Sa � s

�
X
a

JSTa Ma � s� Jlr
X
a

Ba � s�
X
k�b

�kbc
y
k�bck�b:

(6)

The vector operators, Sa;Ma;Ba and the permutation
operator P̂P manifest the dynamical symmetry of TQD.
Their spherical components are defined via Hubbard
operators connecting different states of the octet:

S�a �
���
2

p
�X1a0a � X0a �11a�; S�a � �S�a �

y;

Sza � X1a1a � X �11a �11a ; M�
a �

���
2

p
�X1aSa � XSa �11a�;

M�
a � �M�

a �
y; Mz

a � ��X0aSa � XSa0a�;

B�
a �

���
2

p
�& �aaX

1aS �aa � &aX
Sa �11 �aa �; B�

a � �B�
�aa �

y;

Bza � ��& �aaX0aS �aa � &aXSa0 �aa �:

(7)

Here Sa are spin 1 operators with projections -a �
1a; 0a; �11a, while Ma and Ba couple singlet jSai with
triplet hTa-aj and hT �aa- �aa j, respectively. The permutation
P̂P �

P
a�X

SaS �aa �
P
- X

-a- �aa � commutes with Sl � Sr and
Ml �Mr, while s � 1

2

P
kk0

P
��0 cyk0�0 .̂.��0ck� with Pauli

matrices .̂. is the conduction electron spin operator.
Finally, the (antiferromagnetic) coupling constants are
JTa � 2V2

a=�a, JSTa � &aJTa , and Jlr � VlVr
P
a ��1

a
��a � "F � �a�.

Poor-man scaling equations for extracting the corre-
sponding Kondo temperatures [10] can now be derived
based on conventional one-loop approximation. For the
156602-2



FIG. 3. Phase diagram of TQD.
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Hamiltonian (6) they are much richer, including S, M,
and B lines. The discussion below exhausts all possible
realizations of SO�n� symmetries arising in TQD.

The most symmetric case is realized when �l � �r
and �Tr � �Tl . If all four phase trajectories E��D� inter-
sect at D � Dc, the symmetry of the TQD is P̂P �
SO�4� � SO�4�. The operator B transforms into P̂PM,
and the exchange part of H (6) reduces to

Hint � JT
X
a

�1 � P̂P�Sa � s� JST
X
a

�1 � P̂P�Ma � s: (8)

The vector operators Ma and Sa obey the commutation
relations of o4 Lie algebra,

�Saj; Sak� � iejkmSam; �Maj;Mak� � iejkmSam;

�Maj; Sak� � iejkmMam
(9)

(here j; k;m are Cartesian indices). Besides, Sa �Ma � 0,
and the Casimir operator is S2

a �M2
a � 3. This justifies

the qualification of such TQD as a double spin rotator.
Scaling equations for JT and JST are

dj1
d lnd

� �2��j1�2 � �j2�2�;
dj2
d lnd

� �4j1j2; (10)

with j1 � %0J
T , j2 � %0J

ST , d � %0D. In the limit of
complete degeneracy the system (10) is reduced to a single
equation, dj�=d lnd � �2�j��2 for j� � j1 � j2. Its
solution yields the Kondo temperature TK0 �
�DD exp��1=2j��, which is an obvious generalization of
that derived for a QD with SO�4� symmetry and triplet
ground state [4–6]. The net spin of the TQD is also S � 1,
and the residual underscreened spin is ~SS � 1=2. If the
occasional S=T symmetry is lifted, �11 � ES�Dc� �
ET�Dc� > 0, but the TQD still conserves its permutation
symmetry, the Kondo temperature is not universal any-
more, since the scaling of j2 terminates atD � �11 (cf. [4]).
Analytic solution of Eqs. (10) obtains when j �11j � TK0,
for which j2 � &j1 and TK=TK0 � �TK0= �11�&. The sym-
metry of TQD in this case is P̂P � SO�3� � SO�3�.

For the symmetric configurations considered so far, the
properties of TQD are similar to those of DQD, supple-
mented by the permutation operation. Much richer are
asymmetric configurations where �l � �r, �Tl � �Tr .
When �EESl �

�EETl �
�EESr <

�EETr (Fig. 2), the TQD possesses
an SO�5� symmetry. The group generators of the o5

algebra are the ‘‘left’’ vectors Sl;Ml and the vector B
[with B� �

���
2

p
�X1lSr � XSr �11l�, B� � �B��y; Bz �

��X0lSr � XSr0l�], supplemented by the scalar operator
T̂T � i�XSrSl � XSlSr�. Thus,

�Slj; Slk� � iejkmSlm; �Mlj;Mlk� � iejkmSlm;

�Bj; Slk� � iejkmBm; �Bj; Bk� � iejkmSlm;

�Mlj; Slk� � iejkmMlm; �Mlj; Bk� � iT̂T1jk;

�Bj; T̂T � � iMlj; �T̂T;Mlj� � iBj; �T̂T; Slj� � 0:
(11)

with Ml � Sl � B � Sl � 0, Ml � B � 3XSlSr , and Casimir
operator S2

l �M2
l � B2 � T2 � 4. The exchange
156602-3
Hamiltonian now reads

Hint � JT1lSl � s� JST1l Ml � s� &rJlrB � s; (12)

and the scaling equations are

dj1=d lnd � ��j21 � j22 � j23�; dj2=d lnd � �2j1j2;

dj3=d lnd � �2j1j3; (13)

where j1 � %0J
T
1l, j2 � %0J

ST
1l , and j3 � %0&rJlr. From

Eqs. (13) the Kondo temperature is found,

TK1 � �DD expf��j1 �
���������������
j22 � j23

q
��1g: (14)

Upon increasing �11rl � ESr�
�DD� � ETl�

�DD� the energy
ESr is quenched, and at �11r � TK1 the symmetry re-
duces to SO�4�, with Kondo temperature TK �
j �11rj expf��j1�j �11rj� � j2� �11r���1g (cf. [6]). On the other
hand, upon decreasing �11r � ETr�

�DD� � ESr�
�DD� the sym-

metry P̂P � SO�4� � SO�4� is restored at �11r < TK0.
Another ‘‘exotic’’ symmetry, namely, SO�7�, is real-

ized when the low-lying multiplet is formed by two
triplets ETl;r and one singlet, say, ESl . In this case the o7

algebra is generated by the six vectors of the type S;M;B
and three scalar operators describing various permuta-
tions. Finally, an SO�3� symmetry occurs when only one
triplet state ETa (left or right) is relevant, and the o3

algebra is generated by Sa. The dynamical symmetry of
TQD is thereby exhausted and summarized by the phase
diagram in the x; y plane with x � �r=�l and y � �l=�r
depicted in Fig. 3.

The central domain of dimension TK0 describes the
fully symmetric state (8), and various regimes of Kondo
tunneling correspond to lines or segments in the fx; yg
plane. The vertically hatched domain corresponds to TQD
with singlet ground state where the Kondo effect is absent.
An experimental test is suggested in Fig. 4 which illus-
trates the evolution of TK, with 1rl � y for x � 0:96 and
0:7 corresponding to a symmetry change from P̂P �
SO�4� � SO�4� to P̂P � SO�3� � SO�3� and from SO�5�
to SO�4�, respectively.

In similarity with planar QDs or DQDs with SO�4�
symmetry [3–6], Kondo tunneling may be induced by
156602-3



-4 -3 -2 -1 1 2 3 4
rl TK0

0.2

0.4

0.6

0.8

1

TK TK0

P SO 4 SO 4

P SO 3 SO 3

SO 5

SO 4
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external magnetic field B also in the nonmagnetic sector
of the phase diagram of Fig. 3 close to the SO�5� line. In
this sector �11 � ESl;r � ET < 0, and the Kondo effect
emerges when the Zeeman splitting energy Ez �
g-BB � �11. Because of this compensation ET1 � ESl;r ,
and the spin Hamiltonian confined to this subspace has
a form of anisotropic SU�2� Kondo Hamiltonian

eHH int � JkRzsz � J?�R�s� � R�s��=2: (15)

Here Jk� �DD� � JTl , J?� �DD� �
��������������������������������������������
2��&lJTl �

2 � �&rJlr�2�
q

. The
vector R is defined as

R� �
X
a

AaX
1lSa ; R� � �R��y; (16)

Rz �
	
X1l1l �

X
a

�A2
aX

SaSa � AaA �aaX
SaS �aa �


�
2;

where Al �
���
2

p
&lJk� �DD�=J?� �DD�, Ar �

���
2

p
&rJlr=J?� �DD�,

A2
l � A2

r � 1, and �Rj; Rk� � iejkmRm. The operators
(16) generate the algebra o3 in the spin subspace
fSl; Sr; T1lg specified by the Casimir operator R2 �
�3=4��X1l1l �

P
a�A

2
aX

SaSa � AaA �aaX
SaS �aa ��: The scaling

equations for dimensionless exchange constants read

djk=d lnd � ��j?�
2; dj?=d lnd � �jkj?; (17)

yielding the Kondo temperature,

TKz � �DD exp

�
�

1

C

	
#
2
� arctan

�
jk
C

�

; (18)

where C �
�������������������������������������������������������
�2&2

l � 1��jk�
2 � 2�&rjlr�

2
q

.
Another type of field induced Kondo effect is realized

in the symmetric case of �11 � ESl;r � ETl;r < 0. Now two
components of a triplet, namely, ET1l;r cross with two
singlet states, and the symmetry group of the TQD is
SO�4�. The o4 algebra is formed by two vectors R and
P̂PR which intermix the states Sl;r and T1l;r. The Kondo
Hamiltonian is also anisotropic. An RG procedure simi-
lar to (17) yields the Kondo temperature
156602-4
TKz � �DD exp

�
�

1

2C

	
#
2
� arctan

�
jT

C

�

; (19)

where C �
�������������������������������
�2&2 � 1��jT�2

p
.

To conclude, the dynamical SO�n� symmetry of Kondo
tunneling through an evenly occupied TQD is unraveled.
It is found that the Kondo resonance with variable TK
arises due to strong correlations in a central well, which
plays a role of side-coupled dot for both left and right
wells. The hidden dynamical symmetry manifests itself,
first in the very existence of the Kondo effect in QDs with
even N , and second in nonuniversal TK. Its dependence
on the ratios x; y of the gate voltages and tunneling rate
may be observed as peculiar conductance curve g�x; y� at
low temperature in specific Coulomb blockade windows,
following the curve TK�x; y� exemplified in Figs. 3 and 4.
In a singlet spin state the anisotropic Kondo effect can be
induced in TQD by external magnetic field.

The theory is constructed in a single-channel approxi-
mation for lead electrons. In a split gate geometry, more
than one tunneling channel may arise. One may anticipate
that the peculiar even occupation regime of complex QDs
then transforms into conventional odd occupation Kondo
regime.
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84, 1756 (2000); J. Nygård et al., Nature (London) 408,
342 (2000); M. Pustilnik and L. I. Glazman, Phys. Rev. B
64, 045328 (2001); M. Eto and Yu. V. Nazarov, Phys. Rev.
B 64, 085322 (2001).

[4] N. S. Sasaki et al., Nature (London) 405, 764 (2000);
M. Eto and Yu.V. Nazarov, Phys. Rev. Lett. 85, 1306
(2000); M. Pustilnik and L. Glazman, Phys. Rev. Lett.
85, 2993 (2000); D. Guiliano et al., Phys. Rev. B 63,
125318 (2001).

[5] K. Kikoin and Y. Avishai, Phys. Rev. Lett. 86, 2090
(2001).

[6] K. Kikoin and Y. Avishai, Phys. Rev. B 65, 115329
(2002).

[7] A. C. Hewson, The Kondo Effect to Heavy Fermions
(Cambridge University Press, Cambridge, 1993).

[8] F.D.M. Haldane, Phys. Rev. Lett. 40, 416 (1978).
[9] J. R. Schrieffer and P. A. Wolff, Phys. Rev. 149, 491

(1966).
[10] P.W. Anderson, J. Phys. C 3, 2436 (1970).
156602-4


