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We investigated the effect of time delays on phase configurations in a set of two-dimensional coupled
phase oscillators. Each oscillator is allowed to interact with its neighbors located within a finite radius,
which serves as a control parameter in this study. It is found that distance-dependent time delays induce
various patterns including traveling rolls, squarelike and rhombuslike patterns, spirals, and targets. We
analyzed the stability boundaries of the emerging patterns and briefly pointed out the possible
empirical implications of such time-delayed patterns.
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Spatiotemporal patterns arise in numerous physical,
chemical, and biological systems [1]. The brain, one of
the most complex systems, is now also known to generate
spatiotemporal patterns such as plane waves and spirals
[2—6]. Early studies, in this context, have concentrated on
exploring the dynamics arising in a set of coupled oscil-
lators [6-11]. It has been, however, generally assumed
that interactions among the individual oscillators are
instantaneous. Recently, noting that an inclusion of
time delay is more natural in realistic systems, several
authors have investigated the effects of time delay, and
have found the consequent dynamic phenomena such as
multistability, desynchronization, clustering, amplitude
death, anticipated synchronization, and slow switching
[9-16]. It has also been found recently that a time delay,
proportional to a distance between elements, could pro-
duce a propagating structure in one-dimensional coupled
oscillators [17].

In this paper, we discuss further the effect of time
delays on the dynamics in a complex system in two
dimensions, employing a two-dimensional coupled oscil-
lator model [2-6]. It is found that time delays among
constitutive elements alone can induce definite spatio-
temporal patterns in a two-dimensional complex system.

We start with the following coupled oscillator model
equations for phase variables 6;;(¢) (i and j are integers):

0<ryij=ro
0;(1) = N( . Z W(riij)
x sin|:0k1<t— "”ff>—e,»,(t)} (1)
v
with N(ry) = 0<r“”<r° W(ry,;;). Here, ry;;; denotes the

distance between element (i, j) and element (k, [). The
metric properties of the ensemble are fixed by setting
riij = V(i — k)? + (j — 1)%. In this model, an interaction
is nonlocal and time delayed, characterized by coupling
length r, and signal propagation speed v, and time delays
are expressed by ry;;;/v. Assuming that an individual
element interacts with its neighbors located within a finite
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radius, we introduce a coupling radius denoted by ry: We
also discussed the case of ry — oo in this study. Further,
we introduce a weighting function W(ry; ;;) which mimics
the interaction strength depending on a distance be-
tween interacting elements. Since there is no law about
W(ry,;;), as far as we know, we choose W(ry;;;) = 1/ry;;
assuming that the Gauss’s law of interactions in two-
dimensional cases is also valid here [18].

The above equation without time delays is a model of
coupled limit cycle oscillators in the so-called phase
approximation [7]. It is known that, in the absence of
delays ry,;;/v, for any positive values of the coupling co-
efficients K, all the oscillators finally form a planar solu-
tion where all the oscillators are synchronized, oscillating
with frequency equal to that of the individual oscillators
[7]. The present study of the model (1), on the other
hand, shows that the final steady states correspond to
planar solutions with frequencies different from w or to
frequency-synchronized nontrivial phase configurations.

To find out possible phase configurations, let us assume
steady solutions in which all the oscillators have the same
frequency (). Then the solutions of the model can be
written as 6;;(t) = (¢ + ¢,;. Substitution of these solu-
tions into Eq. (1) yields

0<ry,ij=ro

——sin(¢y — ¢;

ol TRLij

Q =w + - Qrkl’ij/v).

2

ThlS se<lf—c0n51stency condition requires that the sums
Frli =r

N(ro) Zk k=10 o in(¢y — ¢ij — Qry;j/v) be the same

for all (i, j) [17]. Let us consider the situation in the

continuum limit. Differentiating the term with respect

to F[= (i, j)], we get the following:

Ip(F) _ d¢(F)
o7 oF

N(rp)

, for all 7 and 7. 3)

This implies that, in the continuum limit, ¢(7) = 7 -
€ + ¢, is a unique solution, up to the arbitrariness of ¢,
and ¢, as long as ¢ is a unit vector embedded in the lattice
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plane. The case of y = 0 corresponds to synchronized
planar solutions, while nonzero 7ys make roll solu-
tions traveling in the direction of é with the phase veloc-
ity Q/.

However, the space discreteness of the system admits
topological defects, so other phase configurations are also
possible [19]. In this study, we set w = 7r/5, and solved
the equation on a 64 by 64 square plane (1 =i =64,1 =
Jj = 64) with periodic boundary conditions. We checked
that the different size of the lattice does not alter the
result. We tried several kinds of initial conditions. As the
initial conditions in the phase of the form 6,;(0) = 6, +
7;; in this study, where 7;; denotes a random number, we
considered two different cases: (i) 0 = n;; <2m, and
(ii) 0 = 7,; < 107%. In addition, for the dynamic history
of individual oscillators for # <0, we considered two
situations (i) where the oscillators were stationary, and
(i1) where the oscillators have evolved independently
from one another with their natural frequency w.

Figure 1, which is made with the parameters K = 0.6
and ry, = 10, shows effects of the delay 1/v. When the
delay 1/v is small (<0.6), only planar solutions (y = 0)
occur. When the delay is large enough (>1.1), the planar
solution is not available but patterns with nonzero 7s
occur. In the intermediate region (0.6 = 1/v < 1.1), pla-
nar solutions as well as patterns are possible. The lines in
Fig. 1 are the numerically obtained solutions of Eq. (2)
with ¢;; = yi, y=0,33,%7, and I7. We see that the
wavelengths of patterns become shorter generally as de-
lay increases.

Figure 2 provides the phase diagrams of the model. If
the coupling strength K is above K., (denoted by open
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FIG. 1. Synchronization frequency () as a function of a delay

(K = 0.6, rg = 10); squares indicate planar solutions; circles
indicate patterns. Lines are the solutions of Eq. (2). See the text
for details.
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squares), only a synchronized planar solution appears, but
if K is below the critical value K,.; (denoted by filled
squares), the planar solution is not available and the
system evolves into patterns such as rolls [as in
Fig. 3(a)], or other phase distributions [as in Figs. 3(b)—
3(d)] depending on initial configurations. In the regions of
K. <K < K, we see both patterns and planar solutions
depending on initial configurations. Figure 4 shows the
patterns that appear only in the limited regions in the
phase diagram. When r is relatively small (=<5), in other
words, when the effect of space discreteness becomes
important, spirals occur more frequently [See Fig. 4(a)]
than other configurations. Furthermore, the model some-
times organizes target patterns from slightly perturbed
homogeneous phase configurations for parameter K ~
K, [see Fig. 4(b)]. With K ~ K,, there emerge patterns
embedded in a planar solution as shown in Fig. 4(c).

Note that the arrangement of the phase singularities
plays an essential role in forming the patterns of
Figs. 3(b)—3(d). The singularities are possible due to the
discreteness of the space as in spiral patterns, but are
dynamically arranged in a rhombus [Fig. 3(b)] or a square
lattice [Fig. 3(c)]; the phases of oscillators make rotating
waves around those singularities [20]. However, rolls are
more prevalent than squares or rhombus patterns in the
entire region of the diagram.

There seem to exist three kinds of multistabilities in
our model. First, as stated above, we can see planar solu-
tions, rolls, or other phase distributions for the same
parameters depending on initial configurations (see
Figs. 1-3). Second, there are multiple states with different
wavelengths and frequencies even for the same parame-
ters in some cases, which is why we see multiple Qs of
patterns in Fig. 1. This kind of multistability is also
reported in one-dimensional lattices [17]. Third, different
initial configurations make the different angles between
two primitive translation vectors of patterns such as
Figs. 3(b) and 3(c). It seems that multistabilities are the
major characteristics of time-delayed systems [12—14].
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FIG. 2. The phase diagrams of the model with r, = 10 in (a),
and with 1/v =1 in (b). Above open squares, there is no
pattern available, and only planar solutions appear. Between
open and filled squares, the system evolves into planar solutions
or patterns according to initial conditions. Below the filled
squares, a planar solution is not possible here, and only patterns
appear. Solid lines are from Eq. (5). See the text for details.
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FIG. 3 (color). Typical patterns generated in the model: (a) a
traveling roll, (b) a rhombuslike pattern, (c) a squarelike
pattern, (d) coexistence of a rhombuslike pattern and a roll.
K = 1.25, ry = 25,and 1/v = 1, for (a), (b), and (c). Note that
planar solutions are also found for this set of parameter values;
K = 0.6, ry = 10, and 1/v = 1.1, for (d). See Fig. 4(d) for the
color coding.

In the systems of two-coupled oscillators [9,12], or
globally coupled oscillators with uniform time delays
[13], the dynamics are determined by the value of Q7,
where () is the frequency of the synchronized state and 7
is a time delay between oscillators. The physical meaning
of the value is clear. It denotes the virtual phase differ-
ence between oscillators due to delay. If it is near 2nr,
where 7 is an integer, each oscillator can keep pace with
others to make the whole system synchronized, otherwise
it cannot [13]. Likewise, we suggest that the dynamics of
our model is determined by the quantity Qr,/v, which
we call O here, where () is a frequency of a synchronized
planar solution. Our conjecture is that there exists some
value O so that planar solutions are possible only for
0 <0, [21].

We measured ®, directly from numerical simulations
using Egs. (1) and (2). In Fig. 5, we see that ©. is a nearly
constant value ( ~ 2.26), from which we can calculate K .|
in Fig. 2. Substituting the roll solution ¢ = yx to the
continuum limit of Eq. (2) makes the following equation:

K (r
Q=w-=—|" sin(rQ/v)Jo(yr)dr, (€))]
roJo

where J, is a Bessel function. In the case of planar
solutions (y = 0), the above equation can be integrated
to give
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Patterns obtained in simulations of the model:

FIG. 4 (color).
(a) spirals (K = 1.0, ry = 4, and 1/v = 1), (b) a target pattern
(K=04, ry=7, and 1/v = 1), (c) a spiral embedded in a
planar solution (K = 0.8, ry =8, and 1/v = 1). In (¢), the
planar solution oscillates much more slowly than the spiral.
Figure (d) shows the color code used in this paper.

Q) Q)
ne(1-2) ®

2Sln7 wroy,

The solid lines in Figs. 2(a) and 2(b) are obtained by
substituting ® = 2.26 to Eq. (5), and show good agree-
ment with the simulation results.

It is useful to look at what the existence of constant ©,
implies. It means the following. Coupled oscillators tend
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FIG. 5. The quantity Qry/v determines the stability of planar

solutions. We cannot see planar solutions above the filled
squares.
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to be synchronized, but when too large delays make the ®
value go beyond the tolerance limit ®,, they fail to
become a synchronized planar solution and take other
configurations. The occurrence of incoherence in the
coupled oscillators with uniform time delay [13,14] can
now be explained in the same manner.

It is also noteworthy that, in the limit of ry — oo,
Eq. (5) converts to K, = (®,w)/[25sin?*(0,/2)], which is
independent of 1/v. This is surprising, for it means that
we must consider the effects of time delay, however
small, when the interaction length is infinite as in most
physical systems.

In summary, we have investigated the effects of time-
delayed interactions in an ensemble of coupled oscillators
in two dimensions, and found that distance-dependent
time delay alone can induce various spatial patterns,
while without delay or with uniform delay alone only
synchronized planar solutions might appear. We have
analyzed also that the stability of planar solutions can
be determined by the quantity Qr,/v. Our study may find
its relevance in recent experimental observations that
nonlocally interacting oscillators, which are especially
probable for neurobiological systems, exhibit traveling
rolls and spirals [4,6]. Finally, our results seem to suggest
that time delay may play a significant role in the study of
memory storage and information processing based on the
spatiotemporal activities of neurons [2—6].
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