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Hyperbolic Shock Waves of the Optical Self-Focusing with Normal Group-Velocity Dispersion
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The theory of focusing light pulses in Kerr media with normal group-velocity dispersion in �2� 1�
and �3� 1� dimensions is revisited. It is shown that pulse splitting introduced by this dispersion follows
from shock fronts that develop along hyperbolas separating the region of transverse self-focusing from
the domain of temporal dispersion. Justified by a self-similar approach, this property is confirmed by
numerical simulations using an adaptive-mesh refinement code.
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causes defocusing in time in addition to transverse focus- coordinates � � r � t =�, � � rt cos�= �, and
The propagation of ultrashort pulses in matter has
become a topic of intense research, stimulated by the
rapid progress of femtosecond laser sources. For instance,
laser beams with a duration of about 100 fs form robust
light channels in various transparent media [1], which
result from the competition between the Kerr response of
the material and other processes able to limit the intensity
growth caused by self-focusing [2]. Among those, multi-
photon ionization (MPI) [1], nonparaxiality [3], and tem-
poral dispersion including group-velocity dispersion
(GVD), space-time focusing, and self-steepening [3–7]
have been proposed. While MPI applies to pulses capable
of reaching peak intensities larger than 1013 W=cm2,
nonparaxiality comes into play when the beam size be-
comes comparable with the laser wavelength, �0. Thus,
for pulses undergoing moderate intensity growths and
waist compressions [5,6], temporal dispersion appears
as an efficient candidate for inhibiting the collapse. In
that case, the envelope  �~rr; t� of an optical pulse traveling
at the group velocity vg, with central frequency !0 and
wave number k�!0�, is currently modeled by the extended
nonlinear Schrödinger (NLS) equation

i@z � T�1�? � �@2t  � T�j j2 � � 0; (1)

where the coordinates �x; y� entering the transverse
Laplacian, the retarded time t, the axial propagation
distance z, and the intensity j j2 are normalized to the
beam waist w0, the pulse temporal half-width tp,
2k�!0�w2

0, and �20=8�
2w2

0n0n2, respectively (n0 and n2
are the linear and nonlinear refraction indices). Con-
sistently, � � k�!0�w2

0@
2
!k�!�j!0

=t2p refers to the GVD
coefficient. The operator T � 1� �i=!0tp�@t in front of
the cubic nonlinearity accounts for self-steepening and
T�1 in front of the diffraction term �? for space-time
focusing [6].

In the limit T ! 1, when the input beam power P �R
j j2d~rr is above the critical value Pcr ’ 11:7, solutions to

Eq. (1) with � � 0 can become singular at a finite dis-
tance, zc [2]. With � > 0, the nonlinearity, however,
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ing, which results in the splitting of the pulse and limits
the collapse [4,5]. Reduced systems of partial differential
equations [3] indicated that GVD defocuses the pulse
around t ’ 0, which creates two symmetric spikes along
the temporal direction. In [7], a two-scale self-similar
analysis also displayed evidence of the existence of two
caustics along time, where the wave field formed two
maxima. Earlier, it was conjectured [8] that, as the
two peaks continue to self-focus, they could repeatedly
split into symmetric subpeaks until the power P goes
below Pcr. However, this scenario of ‘‘multiple splitting’’
has not been observed clearly as yet. Instead, numerical
simulations using an adaptive-mesh refinement (AMR)
code showed that the interplay between self-focusing and
GVD leads to the generic formation of temporal shocks at
the peak edges [9]. Beyond the shock, the two peaks
disintegrate into ripplelike cells, which, although they
may partly self-focus, do not produce symmetric second-
ary peaks.

These shock structures have received no theoretical
explanation, which is the issue of this Letter. The key
idea is to reformulate Eq. (1) in hyperbolic coordinates
�2 � r2 � t2=� (r2 � x2 � y2), in order to describe the
shock fronts emerging between focusing (�2 > 0) and
defocusing (�2 < 0) regions in the �r; t� plane. Setting
T � 1, we shall apply this new coordinate system to the
�2� 1�-dimensional Eq. (1), for which �? � @2x, and to
the �3� 1�-dimensional case, where �? � r�1@rr@r �
r�2@2�. Splitting patterns in the �2� 1�-dimensional
Eq. (1) were recently analyzed by means of similar vari-
ables [10] and interpreted in terms of modulational in-
stability of plane waves. Here, we show that the field
sharply localizes near hyperbolas, whose number in-
creases with the domain of the self-focusing core of j j
along the direction �. In �3� 1� dimensions, mainly one
hyperbolic shock front arises, which is confirmed by 3D
numerical simulations. Although discarded throughout
the coming analysis, the role of the operators T; T�1

will briefly be discussed at the end of this Letter.
To start with, we pass over to the hyperbolic system of���������������������

2 2
p ����p
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 � rt sin�=
����
�

p
, which transforms Eq. (1) with T � 1

as

i@z � �1�d@��
d�1@� � F�@� � � j j2 � 0: (2)

Here, d refers to the space dimension number 2 in
the �2� 1�-dimensional case and d � 3 in the �3�
1�-dimensional one. For technical convenience, we ignore
the variations of with respect to  (� � 0). The function
F�@� � in Eq. (2) then involves � derivatives as
F�@� � � �4�=��@2�� � �2@2� . Equation (2) shows
that, for initial distributions  0 �  ��;�; 0� with weak
dependence on �, the main dynamics is embarked in the
competition between �1�d@��

d�1@� and j j2 . This
triggers a collapse dynamics, along which the � compo-
nent of  tends to a self-similar shape. We therefore apply
the separation of variables

 � u��; z� � v��; z�; (3)

where the self-focusing component u��; z� is assumed to
obey Eq. (2) with F � 0. Under this condition, u��; z�
adopts the self-similar behavior

u��; z� � L�1�z�$�%; &�ei�&�z��i(�z�%
2=4; (4)

where % � �=L�z�, &�z� �
R
z
0 du=L

2�u�, ( � �LLz, and
the mean size of the beam along the � direction, L�z�,
vanishes near focus. The new eigenfunction$ is expected
to become self-similar in the sense that @&$! 0.
Following standard procedures [2,3,11], $ thus decom-
poses at leading order ((& ! 0) into core and tail parts as

$ ’ $c�%�H�j%T j � %� � C�(�
ei(�z�%

2=4

%1�i�=(
H�%� j%T j�;

(5)

where %T � �2=(�
�����������������������������������
�� i(�d=2� 1�

p
and H�x� denotes

the Heaviside function. The core distribution $c extends
in the bounded domain % < j%T j only. Its shape is close to
the ground-state solution $0 obeying ��$0 ��%$0 �
$3

0 � 0, whose best fit is provided by the sech function

$0�%� ’ A cosh�1�%=a�; (6)

with appropriate amplitude A and width a [12].
Next, after introducing Eq. (3) into Eq. (2) and averag-

ing the resulting equation over the u component, we
rewrite v��; z� in terms of self-similar variables as v �
Q�.; &� with . � �=L2. We find that Q satisfies

i@&Q� 4/.@.Q� 0@2.Q� 1�jQj2 � 1�Q � 0; (7)

where / � �h%�1$�@%$i, 0 � h%2j$j2i, and 1 � hj$j4i,
with hfi �

R
fd ~%%=

R
j$j2d ~%% are evaluated with Eq. (6).

In self-similar regimes, we assume @&Q! 0, so that
Q�.� behaves as a dark soliton at center .� 0 and decays
to zero for .� 1. Q�.� follows the approximation

Q�.� ’ tanh�.=
����
0

p
�H�.c � .� �

C0

.1=4/
H�.� .c�; (8)
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with .c �
������������
0=4/

p
, where the constant C0 is fixed by

solving numerically Eq. (7) with @&Q � 0.
Let us now emphasize the key dynamics underlying the

shock formation. For small enough %, the solution $
becomes close to the core $c and u converges to uc �
L�1$cei�&�i(%

2=4. Near the boundary �2 � 0, this solu-
tion must, by continuity, be identical in the focusing and
defocusing regions as well. From expression (6), u then
behaves like L�1�z�A= cos�

���������������������
t2=�� r2

p
=aL�z�� as �2 ! 0

from below. Thus, in the domain �2 � 0, the core solution
develops singularities issued from poles distributed along
the hyperbolas t2=�� r2 � �2

c �
�2

4 a
2L2�z��2n� 1�2,

with n being an integer. Hyperbolas of poles represent
shock fronts between the focusing and defocusing regions
and for a fixed boundary, e.g., j�j< 1, their number
increases as L�z� decreases. Near the focus, zc, (n� 1)
hyperbolas of spiky fields are excited inside the core
domain bounded by j�j< j�T j � j%T jL�z�. Hence, the
number of hyperbolas is limited to

n� 1< j%T j=�a� 1=2: (9)

We now determine these singular profiles for the cases
d � 2 and d � 3, separately.
�2� 1�-dimensional shock profiles.—For d � 2, self-

focusing follows the route of a ‘‘strong’’ collapse [2,13].
The function ( satisfies (& � e���=( � C2�(� with � �
1 and tends logarithmically to zero as & ! �1. With
decreasing (< 1, the core extension domain %T � 2=(
slowly increases and the core solution thus tends to $0,
modeled by Eq. (6) with A �

��������������������������������������
12 ln2=�4 ln2� 1�

p
’ 2:17

and a �
�������������������
2 ln2� 1

p
=

����������
6 ln2

p
’ 0:76 [12]. By choosing the

typical mean values ( � 0:25–0:3 that precede the estab-
lishment of an effective collapse singularity for, e.g.,
Gaussian beams [11], Eq. (9) predicts that three hyper-
bolas should form at maximum compression.

Figure 1 compares direct numerical simulations of
Eq. (1) using the AMR code described in [9] with
3D plots of the analytical solution (3) for � � �1.
We have used the same initial condition  0 �
�A0=�0�e

��4=2�4
0��

2=2�2
0 with A0 � 25, �0 � 3, and �0 �

3:5 as that employed in [10]. We also simulated Gaussian
beams, whose evolution was qualitatively the same, apart
from two primary peaks arising in the early stage. At z �
0:12, wave compression first forms two symmetric shock
fronts when L�z� � �0=3 [Fig. 1(a)]. At larger z! zc �
0:19, several hyperbolas emerge as the mean size of the
pulse decreases to the lowest value L�z� � �0=10
[Fig. 1(b)]. These hyperbolas neither take place in the
plane �2 > 0 nor undergo modulational instability.
Instead, they form in the inner domain �2 � 0 along
which split pulses are emitted. Figure 1(c) restores this
stage. Plotted from Eq. (3) with the scale length L�z� �
0:3 and ( � 0:3, it shows diverging spikes distributed
along hyperbolas, whose sharp maxima are damped by
the � derivatives of Eq. (2). The component v �
Q��=L2; &� indeed limits the divergence of (3) by digging
153902-2



FIG. 1 (color). (a) j j vs �x; t� at z � 0:12 from numerical
integration of Eq. (1) for d � 2, � � �1, and fourth-order
super-Gaussian initial condition. (b) j j at z ’ zc � 0:19.
(c) j j � juj � jvj vs �x; t� constructed from Eq. (3), where u
and v are given by the combination of Eqs. (4), (5), and (8),
with $c defined by its sech approximation and L � ( � 0:3.
Patterns are centered around x � t � 0.
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a hole at the center and by localizing j j at large r and t.
The constants in Eq. (7) take the values / � 1:3, 0 �
1:18, and 1 � 2, and the function Q, once computed
numerically, is evaluated by Eq. (8) with C0 ’ 0:46.
Note that around center the analytical estimate j j �
L�1j$j � jQj promotes singularities that we soften by
using a limited resolution in Fig. 1(c). These poles ac-
tually result from the assumption of exact self-similarity,
which we apply to our model, but is never strictly attained
in Eq. (1). From this representation of j j, we shall retain
that transverse compression pushes the boundary layer
j�cj � �2n� 1��aL�z�=2 separating focusing/defocus-
ing domains to zero, which excites hyperbolic shock
153902-3
waves with diverging spikes. The number of shock fronts
increases as L�z� ! 0, but remains limited by the exten-
sion domain of the core, j�j< j�Tj. On the whole, Fig. 1
emphasizes the occurrence of three hyperbolic shock
waves at maximal compression, as expected.
�3� 1�-dimensional shock profiles.—For d � 3, col-

lapsing solutions shrink with a scale length L�z� � �zc �
z�1=2, according to the ‘‘weak’’ collapse scenario [13]; i.e.,
collapse becomes rapidly self-similar and the function $
recovers a universal localized shape characterized by � �
0:545 and $�0� � 1:39, whenever ( is fixed to 1=2. This
self-similar state (5) has a core distribution close to Eq. (6)
in the central domain % < j%T j ’ 3:1, and close to the
decreasing tail $T ’ C=%1�2i� with C2 � 2:02 in the
outer region % > j%T j. The core $c is again modeled by
Eq. (6), in which imposing A � $�0� � 1:39 requires one
to tune suitably the soliton width to a � a0A0=$�0� � 1:4.
Here, a0 �

������������������
�2 � 12

p
=3� and A0 �

�����������������������������
6�2=��2 � 6�

p
are

the amplitude and size of a 3D NLS soliton with � � 1.
Near the boundary r ’ t=

����
�

p
, shock fronts arise along the

hyperbolas defined by Eq. (9), where a ’ 1:4. As in the 2D
case, the number of hyperbolas increases all the more as
L�z� becomes smaller, but it is still limited by the core
extension domain j�j< j�Tj near focus. The main differ-
ence lies in the values of the size parameter a and in the
self-similar value of the turning point j%Tj, which are,
respectively, twice longer and smaller than their two-
dimensional counterparts. As a result, the number of
hyperbolas diminishes compared with the 2D case. With
( � 0:5, only one hyperbola of spikes is excited. This
may justify why multipeaked structures, which should be
distributed along distinct hyperbolas, are absent from the
shock patterns revealed in Ref. [9].

Figure 2(a) exhibits the amplitude j j versus �x; y �
0; t� numerically integrated from Eq. (1) in �3� 1�
dimensions with the Gaussian datum,  0 �
A0e��x2�y2�=2�t2=2, where A0 � 3:6 (P � 3:5Pcr). We also
used 3D super-Gaussianlike initial conditions of similar
power, which restored the same dynamics. Maximal
compression is attained as the ratio L�z�=L�0� reaches
0:1–0:15. For comparison, Fig. 2(b) shows a 3D plot of
j j modeled by Eq. (3) with L�z� � 0:15 and ( � 1=2
that reproduces the splitting pattern of Fig. 2(a). The
averaging coefficients in Eq. (7) take the values / ’
0:35, 0 ’ 3:7, and 1 ’ 0:64, and the function Q, con-
strained to the self-similar limit, behaves closely to
Eq. (8), where C0 ’ 3:17. On the whole, only one hyper-
bolic shock front forms, as expected. Figure 2(c) then
shows the further numerical evolution of the shock
disintegration into ripplelike cells distributed along hy-
perboloids after the focus. Because it only involves the
self-similar limit of j j near the point zc of maximum
compression, our modeling cannot reproduce these sec-
ondary cells. We can, however, anticipate that the tran-
sition from a self-compression regime (Lz < 0) to a
dispersive one (Lz > 0) will force the function ( to
decrease at some distance z > zc, which would allow,
153902-3



FIG. 2 (color). (a) j j vs �x; 0; t� from AMR numerical simu-
lation of Eq. (1) for � � �1 and d � 3 at z ’ zc � 0:26 ( 0 �
Gaussian). (b) Analytical representation of j j � juj � jvj vs
�r; t� with L�z� � 0:15 and ( � 0:5. (c) Formation of ripplelike
cells as the pulse spreads out at later z � 0:2735.
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through the increase of j%T j, for the formation of higher-
order hyperbolas giving rise to ripplelike cells.

Let us now qualitatively comment on the influence
expected from the operators T; T�1 in Eq. (1).
Assuming T�1 ’ 1� �i=!otp�@t as !0tp � 1, their ac-
tion can be evaluated from the equation for power

@zP � @t
Z �

2�j j2@targ� �

�
1

!otp

�
3

2
j j4 � jr? j

2

��
d~rr; (10)

where the first integral term refers to GVD which creates
153902-4
two symmetric peaks. The last contribution involves time
derivatives from T; T�1 applied to the L4 norm and to the
gradient norm of  , which both diverge in the collapse
regime [2]. Starting from a bell-shaped pulse centered on
t � 0, we infer that power will be transferred into the
time region where @tj j2 is negative and thus enhance the
trailing peak emerging at t > 0. Self-steepening and
space-time focusing should hence make the shock profiles
asymmetric, which was experimentally reported in [6].

In summary, self-similar collapsing states have en-
abled us to describe the hyperbolic shock fronts taking
place in the boundary layer separating focusing/defocus-
ing domains in NLS equations with normal GVD. The
shocks develop with singular spikes distributed along
hyperbolas. In the �2� 1�-dimensional case, several
shock waves arise as the core solution of j j expands in
a rather large region (j%Tj � 2=(� 1). This process
generates a turbulent, multipeaked wave field. In the �3�
1�-dimensional case, the self-focusing core exhibits a
narrower extension domain (j%Tj � 3:1). One hyperbolic
shock front forms, which provides the two-peaked profile
discovered in [4].
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