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Hyperbolic Shock Waves of the Optical Self-Focusing with Normal Group-Velocity Dispersion
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The theory of focusing light pulses in Kerr media with normal group-velocity dispersion in (2 + 1)
and (3 + 1) dimensions is revisited. It is shown that pulse splitting introduced by this dispersion follows
from shock fronts that develop along hyperbolas separating the region of transverse self-focusing from
the domain of temporal dispersion. Justified by a self-similar approach, this property is confirmed by
numerical simulations using an adaptive-mesh refinement code.
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The propagation of ultrashort pulses in matter has
become a topic of intense research, stimulated by the
rapid progress of femtosecond laser sources. For instance,
laser beams with a duration of about 100 fs form robust
light channels in various transparent media [1], which
result from the competition between the Kerr response of
the material and other processes able to limit the intensity
growth caused by self-focusing [2]. Among those, multi-
photon ionization (MPI) [1], nonparaxiality [3], and tem-
poral dispersion including group-velocity dispersion
(GVD), space-time focusing, and self-steepening [3-7]
have been proposed. While MPI applies to pulses capable
of reaching peak intensities larger than 10'* W/cm?,
nonparaxiality comes into play when the beam size be-
comes comparable with the laser wavelength, A,. Thus,
for pulses undergoing moderate intensity growths and
waist compressions [5,6], temporal dispersion appears
as an efficient candidate for inhibiting the collapse. In
that case, the envelope (7, 1) of an optical pulse traveling
at the group velocity v,, with central frequency w, and
wave number k(w,), is currently modeled by the extended
nonlinear Schrodinger (NLS) equation

0y +T Ay —oay +T(YlPy) =0, (1)

where the coordinates (x,y) entering the transverse
Laplacian, the retarded time ¢, the axial propagation
distance z, and the intensity ||> are normalized to the
beam waist wy, the pulse temporal half-width 7,
2k(wo)w}d, and A3/8m*wingn,, respectively (ny and n,
are the linear and nonlinear refraction indices). Con-
sistently, o = k(wo)w§dsk(w)l,, /15 refers to the GVD
coefficient. The operator 7' = 1 + (i/wt,)d, in front of
the cubic nonlinearity accounts for self-steepening and
T~ in front of the diffraction term A | ¢ for space-time
focusing [6].

In the limit 7 — 1, when the input beam power P =
[ ly|>d7 is above the critical value P, = 11.7, solutions to
Eq. (1) with o = 0 can become singular at a finite dis-
tance, z. [2]. With o > 0, the nonlinearity, however,
causes defocusing in time in addition to transverse focus-
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ing, which results in the splitting of the pulse and limits
the collapse [4,5]. Reduced systems of partial differential
equations [3] indicated that GVD defocuses the pulse
around ¢ = 0, which creates two symmetric spikes along
the temporal direction. In [7], a two-scale self-similar
analysis also displayed evidence of the existence of two
caustics along time, where the wave field formed two
maxima. Earlier, it was conjectured [8] that, as the
two peaks continue to self-focus, they could repeatedly
split into symmetric subpeaks until the power P goes
below P... However, this scenario of “multiple splitting”
has not been observed clearly as yet. Instead, numerical
simulations using an adaptive-mesh refinement (AMR)
code showed that the interplay between self-focusing and
GVD leads to the generic formation of temporal shocks at
the peak edges [9]. Beyond the shock, the two peaks
disintegrate into ripplelike cells, which, although they
may partly self-focus, do not produce symmetric second-
ary peaks.

These shock structures have received no theoretical
explanation, which is the issue of this Letter. The key
idea is to reformulate Eq. (1) in hyperbolic coordinates
n> =r*— /o (r* = x> + y?), in order to describe the
shock fronts emerging between focusing (5> > 0) and
defocusing (n? <0) regions in the (r, t) plane. Setting
T =1, we shall apply this new coordinate system to the
(2 + 1)-dimensional Eq. (1), for which A; = 42, and to
the (3 + 1)-dimensional case, where A, = r 19,79, +
r~29%. Splitting patterns in the (2 + 1)-dimensional
Eq. (1) were recently analyzed by means of similar vari-
ables [10] and interpreted in terms of modulational in-
stability of plane waves. Here, we show that the field
sharply localizes near hyperbolas, whose number in-
creases with the domain of the self-focusing core of |
along the direction 5. In (3 + 1) dimensions, mainly one
hyperbolic shock front arises, which is confirmed by 3D
numerical simulations. Although discarded throughout
the coming analysis, the role of the operators 7,7 !
will briefly be discussed at the end of this Letter.

To start with, we pass over to the hyperbolic system of
coordinates n =+/r* — */o, wu = rtcosf/ /o, and
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v = rtsinf/\/o, which transforms Eq. (1) with T =1
as

io. + ', o + F(9,4) + gy = 0. (2)

Here, d refers to the space dimension number 2 in
the (2 + 1)-dimensional case and d =3 in the (3 +
1)-dimensional one. For technical convenience, we ignore
the variations of ¢ with respect to v (@ = 0). The function
F(d,¢) in Eq. (2) then involves u derivatives as
F(0,4) = (4u/n)o7,¢ — n*0%,¢. Equation (2) shows
that, for initial dlstrlbutions 1/10 = (7, u, 0) with weak
dependence on u, the main dynamics is embarked in the
competition between n'~¢0, 79719, and |¢|*y. This
triggers a collapse dynamics, along which the n compo-
nent of ¢ tends to a self-similar shape. We therefore apply
the separation of variables

= u(n, z) Xv(w, 2), 3)

where the self-focusing component u(7, z) is assumed to
obey Eq. (2) with F = 0. Under this condition, u(n, z)
adopts the self-similar behavior

u(n, 2) = L' (2) (&, {)eM@-iFDE/ 4)

where ¢ = 7/L(z), {(z) = [§du/L*(u), B = —LL_, and
the mean size of the beam along the 7 direction, L(z),
vanishes near focus. The new eigenfunction ¢ is expected
to become self-similar in the sense that d,¢ — 0.
Following standard procedures [2,3,11], ¢ thus decom-
poses at leading order (8, — 0) into core and tail parts as

PG £2/4
b= B~ €)+ COB) iy HE ~ |

&)

where &7 = (2/B)J/A +iB(d/2 — 1) and H(x) denotes
the Heaviside function. The core distribution ¢, extends
in the bounded domain & < |£7| only. Its shape is close to
the ground-state solution ¢, obeying —A¢dy + Agpy +
¢y = 0, whose best fit is provided by the sech function

bo(é) = Acosh™!(¢/a), (6)

with appropriate amplitude A and width a [12].

Next, after introducing Eq. (3) into Eq. (2) and averag-
ing the resulting equation over the # component, we
rewrite v(u, z) in terms of self-similar variables as v =
O(p, {) with p = u/L?. We find that Q satisfies

10,0 —4apd,0 —80;0 + y(IQF =D =0, (7

where @ = —(¢16"9,6). 8 = (¢, and y = (|61,
with (f) = ]fd.f/ f|¢|2d§ are evaluated with Eq. (6).
In self-similar regimes, we assume 9,0 — 0, so that
Q(p) behaves as a dark soliton at center p ~ 0 and decays
to zero for p > 1. Q(p) follows the approximation

0(p) = tanh(p/~/8)H(p, — p) + %H(p )
p
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with p. = \/6/4a, where the constant C’ is fixed by
solving numerically Eq. (7) with 9,0 = 0.

Let us now emphasize the key dynamics underlying the
shock formation. For small enough &, the solution ¢
becomes close to the core ¢, and u converges to u, =

L~ 1¢p eM~iBE/4 Near the boundary 52 = 0, this solu-
tion must, by continuity, be identical in the focusing and
defocusing regions as well. From expression (6), u then
behaves like L™'(z)A/ cos[v/1*/o — r*/aL(z)] as n*> — 0
from below. Thus, in the domain n2 = 0, the core solution
develops singularities issued from poles distributed along
the hyperbolas /o —r’> = n2 = ”Tzasz(z)Qn +1)2,
with n being an integer. Hyperbolas of poles represent
shock fronts between the focusing and defocusing regions
and for a fixed boundary, e.g., |n| <1, their number
increases as L(z) decreases. Near the focus, z., (n + 1)
hyperbolas of spiky fields are excited inside the core
domain bounded by |n| < |n;| = |&€7|L(z). Hence, the
number of hyperbolas is limited to

n+1<|&l|/ma+ 1/2. 9)

We now determine these singular profiles for the cases
d = 2 and d = 3, separately.

(2 + 1)-dimensional shock profiles.—For d = 2, self-
focusing follows the route of a ““strong” collapse [2,13].
The function B satisfies B, ~ e~ ™/F ~ C?(B) with A =
1 and tends logarithmically to zero as { — +oo. With
decreasing B < 1, the core extension domain &, = 2/
slowly increases and the core solution thus tends to ¢,
modeled by Eq. (6) with A = \/121n2/(41n2 — 1) ~2.17
and a = +/21n2 + 1/4/61n2 =~ 0.76 [12]. By choosing the
typical mean values 8 = 0.25-0.3 that precede the estab-
lishment of an effective collapse singularity for, e.g.,
Gaussian beams [11], Eq. (9) predicts that three hyper-
bolas should form at maximum compression.

Figure 1 compares direct numerical simulations of
Eq. (1) using the AMR code described in [9] with
3D plots of the analytical solution (3) for o = +1.
We have used the same initial condition g =
(Ag/mo)e” ™'/~ 1 /1215 with Ay = 25, 9y = 3, and po =
3.5 as that employed in [10]. We also simulated Gaussian
beams, whose evolution was qualitatively the same, apart
from two primary peaks arising in the early stage. Atz =
0.12, wave compression first forms two symmetric shock
fronts when L(z) ~ no/3 [Fig. 1(a)]. At larger z — z, =
0.19, several hyperbolas emerge as the mean size of the
pulse decreases to the lowest value L(z) ~ 7,/10
[Fig. 1(b)]. These hyperbolas neither take place in the
plane 7?> >0 nor undergo modulational instability.
Instead, they form in the inner domain %> = 0 along
which split pulses are emitted. Figure 1(c) restores this
stage. Plotted from Eq. (3) with the scale length L(z) =
0.3 and B = 0.3, it shows diverging spikes distributed
along hyperbolas, whose sharp maxima are damped by
the w derivatives of Eqg. (2). The component v =
O(u/L?, {) indeed limits the divergence of (3) by digging
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FIG. 1 (color). (a) |¢| vs (x,7) at z =0.12 from numerical
integration of Eq. (1) for d =2, o = +1, and fourth-order
super-Gaussian initial condition. (b) [¢| at z =z, = 0.19.
©) |l = |ul X |v| vs (x, t) constructed from Eq. (3), where u
and v are given by the combination of Egs. (4), (5), and (8),
with ¢, defined by its sech approximation and L = 8 = 0.3.
Patterns are centered around x =t = 0.

a hole at the center and by localizing || at large r and r.
The constants in Eq. (7) take the values o = 1.3, § =
1.18, and y = 2, and the function Q, once computed
numerically, is evaluated by Eq. (8) with C’ = 0.46.
Note that around center the analytical estimate || =
L7 '|¢| X |Q| promotes singularities that we soften by
using a limited resolution in Fig. 1(c). These poles ac-
tually result from the assumption of exact self-similarity,
which we apply to our model, but is never strictly attained
in Eq. (1). From this representation of ||, we shall retain
that transverse compression pushes the boundary layer
.l = (2n + 1)al(z)/2 separating focusing/defocus-
ing domains to zero, which excites hyperbolic shock
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waves with diverging spikes. The number of shock fronts
increases as L(z) — 0, but remains limited by the exten-
sion domain of the core, || < |757|. On the whole, Fig. 1
emphasizes the occurrence of three hyperbolic shock
waves at maximal compression, as expected.

(3 + 1)-dimensional shock profiles—For d = 3, col-
lapsing solutions shrink with a scale length L(z) ~ (z, —
Z)l/z, according to the “weak’” collapse scenario [13]; i.e.,
collapse becomes rapidly self-similar and the function ¢
recovers a universal localized shape characterized by A =
0.545 and ¢(0) = 1.39, whenever g is fixed to 1/2. This
self-similar state (5) has a core distribution close to Eq. (6)
in the central domain ¢ < |&;| =~ 3.1, and close to the
decreasing tail ¢y =~ C/&'2* with C? =2.02 in the
outer region & > |£7|. The core ¢, is again modeled by
Eq. (6), in which imposing A = ¢(0) = 1.39 requires one
to tune suitably the soliton widthto a = a’A’/$(0) = 1.4.
Here, a' = vVa? + 12/37 and A’ = \/672/(7w* — 6) are
the amplitude and size of a 3D NLS soliton with A = 1.
Near the boundary r = t/./c, shock fronts arise along the
hyperbolas defined by Eq. (9), where a = 1.4. Asin the 2D
case, the number of hyperbolas increases all the more as
L(z) becomes smaller, but it is still limited by the core
extension domain |n| < |n;| near focus. The main differ-
ence lies in the values of the size parameter a and in the
self-similar value of the turning point |£7|, which are,
respectively, twice longer and smaller than their two-
dimensional counterparts. As a result, the number of
hyperbolas diminishes compared with the 2D case. With
B = 0.5, only one hyperbola of spikes is excited. This
may justify why multipeaked structures, which should be
distributed along distinct hyperbolas, are absent from the
shock patterns revealed in Ref. [9].

Figure 2(a) exhibits the amplitude || versus (x,y =
0, t) numerically integrated from Eq. (1) in 3+ 1)
dimensions with the Gaussian datum, ¢, =
ApeWCH/2=2/2 \where Ay = 3.6 (P = 3.5P.,). We also
used 3D super-Gaussianlike initial conditions of similar
power, which restored the same dynamics. Maximal
compression is attained as the ratio L(z)/L(0) reaches
0.1-0.15. For comparison, Fig. 2(b) shows a 3D plot of
|#] modeled by Eq. (3) with L(z) = 0.15 and B8 = 1/2
that reproduces the splitting pattern of Fig. 2(a). The
averaging coefficients in Eq. (7) take the values a =
0.35, 6 =3.7, and y =~0.64, and the function Q, con-
strained to the self-similar limit, behaves closely to
Eq. (8), where C’ =~ 3.17. On the whole, only one hyper-
bolic shock front forms, as expected. Figure 2(c) then
shows the further numerical evolution of the shock
disintegration into ripplelike cells distributed along hy-
perboloids after the focus. Because it only involves the
self-similar limit of |¢/| near the point z, of maximum
compression, our modeling cannot reproduce these sec-
ondary cells. We can, however, anticipate that the tran-
sition from a self-compression regime (L, <0) to a
dispersive one (L, > 0) will force the function B to
decrease at some distance z > z., which would allow,
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FIG. 2 (color). (a) || vs (x, 0, £) from AMR numerical simu-
lation of Eq. (1) for o0 = +1andd =3 at z =z, = 0.26 (¢ =
Gaussian). (b) Analytical representation of |¢| = |u| X |v| vs
(r, 1) with L(z) = 0.15 and 8 = 0.5. (c) Formation of ripplelike
cells as the pulse spreads out at later z = 0.2735.

through the increase of |£7|, for the formation of higher-
order hyperbolas giving rise to ripplelike cells.

Let us now qualitatively comment on the influence
expected from the operators 7,7 ! in Eqg. (1)
Assuming T ' =1 — (i/w,t,)d, as wqt, > 1, their ac-
tion can be evaluated from the equation for power

9,P =9, Hz(rlwlza,arg(sb)
_ L@W,w + |vl¢|2>}d?, (10)

W,

where the first integral term refers to GVD which creates

153902-4

two symmetric peaks. The last contribution involves time
derivatives from 7, T~ ! applied to the L* norm and to the
gradient norm of ¢, which both diverge in the collapse
regime [2]. Starting from a bell-shaped pulse centered on
t = 0, we infer that power will be transferred into the
time region where 9,||? is negative and thus enhance the
trailing peak emerging at ¢t > (. Self-steepening and
space-time focusing should hence make the shock profiles
asymmetric, which was experimentally reported in [6].

In summary, self-similar collapsing states have en-
abled us to describe the hyperbolic shock fronts taking
place in the boundary layer separating focusing/defocus-
ing domains in NLS equations with normal GVD. The
shocks develop with singular spikes distributed along
hyperbolas. In the (2 + 1)-dimensional case, several
shock waves arise as the core solution of || expands in
a rather large region (|&7| =2/8 > 1). This process
generates a turbulent, multipeaked wave field. In the (3 +
1)-dimensional case, the self-focusing core exhibits a
narrower extension domain (|£7| = 3.1). One hyperbolic
shock front forms, which provides the two-peaked profile
discovered in [4].
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