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Luneburg Lens Approach to Nuclear Rainbow Scattering
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The physical interpretation of nuclear rainbow scattering within the frame of the optical model is
critically investigated. Starting from the properties of the Luneburg lens, a gradient index device that
displays refractive features similar to those of the nuclear potential, important differences between the
mechanisms producing the nuclear and optical rainbows are pointed out.
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FIG. 1. Effect on the position of the ‘‘Airy minima’’ of the
farside contribution to elastic scattering (labeled A2, A3, and
A4; full lines) of a reduction of the nominal absorption of the
optical model potential used by Ogloblin et al. [5] to describe
their 16O� 12C data at 132 MeV (dots). Inset: comparison of
the classical (full line) and quantum mechanical (open circles)
to present a novel approach to the understanding of the
nuclear rainbow and Airy structure; in particular, we

deflection function calculated with the real part of the same
potential (adapted from [6]).
The optical model, in which the highly complicated
nucleus-nucleus interaction is replaced by a complex two-
body effective potential, plays a central role in the de-
scription of nucleus-nucleus scattering [1]. It has recently
been found that, at incident energies of a few MeV per
nucleon, several light heavy-ion systems, among which
16O� 16O, 16O� 12C, and 12C� 12C display more trans-
parency than most neighboring systems, for which ab-
sorption at small and intermediate distances is nearly
complete. Indeed, their elastic scattering angular distri-
butions reveal unmistakable refractive features, such as
rainbow scattering patterns and broad interference min-
ima; the latter have come to be known in the literature as
‘‘Airy minima’’ [2]—a terminology to which, for con-
venience, we will stick in most of the following. These
refractive features, which are contained in the farside
contribution to the scattering amplitude [3], can be de-
scribed consistently only by resorting to optical poten-
tials with a deep (several hundreds MeV) real part.

In the theory of the meteorological rainbow [4], the
primary bow owes its existence to the fact that the de-
flection angle of the rays reflected once inside a raindrop
reaches an extremum for an impact parameter b equal to
about 7=8 of the radius of the drop. Airy structure, which
appears on the lit side of the rainbow in the form of faint
supernumerary bows, is associated with the interference
between pairs of trajectories that lead to a same deflection
angle, with an impact parameter, respectively, larger and
smaller than that corresponding to the extremum of the
deflection function.

The similarity of the pattern displayed by some light
heavy-ion elastic scattering angular distributions, and the
Airy structure observed in the meteorological rainbow,
may look somewhat surprising in view of the important
qualitative and quantitative differences between these
two scattering systems. As a matter of fact, few studies
have been devoted to a detailed investigation of the in-
terrelation of the nuclear rainbow and Airy extrema with
their optical counterparts. It is the purpose of this Letter
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want to clarify the transition between the region of rela-
tively high incident energies where rainbow scattering has
set in and lower energies where rainbow scattering is not
yet observed but the nuclear ‘‘Airy minima’’ are clearly
present.

Most of the forthcoming discussion will center on
calculations performed by discarding the imaginary
part of the potential; indeed, the rainbow pattern and
Airy structure are largely insensitive to a reduction of
the absorption: in most cases, the rainbow angle and the
angular position of the Airy minima do hardly change,
even when the potential is made purely real ([5]; see also
Fig. 1). The second simplification will be to discuss the
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physics of the nuclear Airy structure in terms of the
interference between classical trajectories leading to the
same scattering angle; this is justified by the fact that for a
purely real interaction potential, the quantum deflection
function calculated from the (real) phase shifts for the
systems investigated here is very close to its classical
limit [6] (Fig. 1). The remarkable success of semiclassical
approaches also points to the pertinence of the concept of
trajectory in the description of light-ion and light heavy-
ion scattering down to relatively low energies. Thus in the
so-called barrier-wave/internal-wave approach of Brink
and Takigawa [7] (which supposes that the real part of the
effective potential displays a ‘‘pocket’’ at small distances
for all the active partial waves, a condition which is
fulfilled up to relatively high incident energy for the
deep potentials considered here), the elastic scattering
amplitude is split into two contributions, corresponding,
respectively, to the part of the flux which is reflected at
the potential barrier, and that which crosses the barrier
and is reflected at the most internal turning point of the
effective potential. The Airy oscillations seen in the
elastic 16O� 16O angular distributions for energies of 5
to 10 MeV per nucleon are due to the interference between
these two contributions [8], each of which behaves
smoothly in the angular region where the Airy oscilla-
tions are observed.

The classical trajectory of a material particle of energy
E moving in a potential V and that of a light ray prop-
agating in a medium with refractive index n are identical
provided [9]

n �

�������������
1�

V
E

r
: (1)

The potential corresponding to the propagation of light
in a raindrop is a square well. Nussenzveig [10,11] has
studied high frequency scattering of a scalar plane wave
from a transparent sphere in great detail; using theWatson
transformation he was able to expand the scattering am-
plitude into a multiple scattering (Debye) series, where
each successive term is associated with an increasing
number of refracted rays inside the sphere. Thus the first
two terms (p � 0; 1) correspond, respectively, to direct
reflection at the surface of the sphere and to direct trans-
mission without any internal reflection; the usual rain-
bow and the secondary rainbow are associated,
respectively, with the third and fourth terms of this series
(p � 2; 3). In the potential picture, all the terms of the
series, except the second one, involve nonclassical reflec-
tions; for example, the p � 0 term corresponds in the
mechanical picture to a reflection at the potential discon-
tinuity, at an incident energy higher than the effective
potential barrier: this typical wave effect is especially
enhanced at sharp boundaries like that of a square well.

The square well potential associated with the raindrop,
and optical potentials used in the description of light
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heavy-ion scattering, display several important differen-
ces: (i) The refractive index corresponding to the central
part of the optical potential is much higher than that (n �
1:33) of water: the depth at the origin of the real part of
the 16O� 16O potential of Khoa et al. [12], at 145 MeV
incident energy, is about 350 MeV, which corresponds to a
central refractive index (n ’ 2:4) comparable to that of
diamond; (ii) the real part of the optical potential at small
and intermediate distances is not constant; for example,
the highly successful folding model potential [13] is
much better approximated by a harmonic oscillator po-
tential: the nuclear medium resembles less a crystal ball
with a constant refractive index than a gradient index
(GRIN) lens [14]; (iii) the surface of the real part of the
optical potential is diffuse, which should reduce the
importance of nonclassical reflections; (iv) the nuclear
interaction includes a Coulomb repulsive term; for light-
ion and light heavy-ion scattering, Coulomb effects are
qualitatively not very important, except at small angles;
these will be discarded in the rest of the discussion;
(v) absorption, which is negligible in the meteorological
case, is an important feature in nuclear scattering;
as stated above this difference does, however, not seem
to be decisive in the discussion of rainbow and Airy
phenomena.

A particular GRIN lens, the so-called Luneburg lens
[14], has a refractive index profile that approximates
nicely that of the real part of the nuclear optical potential
at small and intermediate distances. This spherical
lens—whose refractive index n at the surface equals
that of the surrounding medium, which we will suppose
to be vacuum—produces perfect focusing, inside or out-
side the lens, of a beam of incident parallel light rays. In
the case of internal focusing, the refractive index profile is
[14]

n2�r � R� �
r21 � r2 � R2

r21
; n�r > R� � 1; (2)

where R is the radius of the lens, and r1 <R is the
distance of the focus to the center of the lens. Using
Eq. (1) one obtains for the potential having equivalent
properties

V�r � R� � V0

�
r2

R2 � 1

�
; V0 � E

�
R
r1

�
2
;

V�r > R� � 0;
(3)

that is, a truncated harmonic oscillator potential, which
we will call in the present context a ‘‘Luneburg poten-
tial.’’ The focus moves away from the origin when energy
increases:

r1�E� �
R������
V0

p
����
E

p
; (4)

at the critical energy Ecrit � V0 the focus reaches the
surface of the sphere (r1 � R).
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The focusing properties of the optical model potential
have recently been studied for light-ion systems display-
ing incomplete absorption [15], for which a conspicuous
focus appears in the probability density associated with
the scattering wave function. A comparison of the 16O�
16O folding model potential used by Nicoli et al. [16] at
75 MeV, with an ‘‘osculating’’ Luneburg potential (with
parameters V0 � 310 MeV, R � 4:8 fm), is presented in
Fig. 2, together with the classical trajectories associated
with these two potentials. The focusing properties of the
two potentials are seen to be closely similar. Of course,
the external trajectories of the latter, which has a different
surface behavior, are qualitatively different; we will come
back to that point later.

The classical deflection angle associated with a
Luneburg potential for E< Ecrit is a monotonic function
of the impact parameter; the maximum deflection angle,
which corresponds to a grazing trajectory (b � R), is
equal to �. The deflection function has thus only one
branch (Fig. 3), which is associated with an internal
contribution to the scattering: the turning points corre-
sponding to the barrier contribution (b > R) are located
outside the range R of the potential, and the associated
FIG. 2. Top: comparison of the 16O� 16O folding potential of
Nicoli et al. [16] (full line) with a square well, and with a
Luneburg potential (V0 � 310 MeV, R � 4:8 fm, long dashed
line) and its smooth-edge version (� � 3:6 fm, short dashed
line). Bottom: classical trajectories for the 16O� 16O system at
75 MeV incident energy, calculated using the folding potential
of Nicoli et al. [16] (left) and the Luneburg potential with
radius R � 4:8 fm (cf. dashed line, right) (the Coulomb inter-
action has been switched off).
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trajectories are not deflected. Since the deflection func-
tion has no extremum and has only one branch, no rain-
bow nor interference structure can be produced.

Although the shape of the Luneburg potential approx-
imates that of realistic nuclear potentials much better
than a square well, it has obviously an inadequate behav-
ior in the surface region. The surface behavior of the
nuclear potential can be simulated by introducing a cutoff
� < R, beyond which an exponential tail is smoothly
connected; the choice � � 3:6 fm brings this ‘‘smooth-
edge Luneburg potential’’ in very good agreement with
the 75 MeV 16O� 16O nuclear potential on the whole
radial range (Fig. 2), and the classical trajectories calcu-
lated with this potential become nearly indistinguishable
from those obtained with the real part of the nuclear
potential. Because the potential has now become an
‘‘imperfect Luneburg potential,’’ some astigmatism is
observed; in particular, trajectories passing in the out-
skirts of the potential, especially those with a distance of
closest approach larger than R, are deflected at angles
smaller than some trajectories with a smaller impact
parameter; as a result the deflection function acquires a
second branch for large impact parameters (Fig. 3). At
low energy, the effective potential curves associated with
this smooth-edge potential display a pocket, separated
from the outside region by a smooth barrier maximum,
and at the ‘‘grazing impact parameter’’ bgr, for which the
top of the barrier is exactly equal to the incident energy,
orbiting, as discussed, e.g., by Ford and Wheeler [17],
occurs. At low energy, the two branches of the classical
deflection function are thus now separated by a singular-
ity at bgr (Fig. 3; each branch diverges logarithmically
there [17]); this is a well-documented situation, e.g., in
molecular collision physics [18]. As the deflection func-
tion has no genuine extremum, it still does not produce
rainbow scattering; however, the presence of the second
FIG. 3. Schematic representation of a Luneburg potential and
its classical deflection function for E< Ecrit (top); a smooth-
edge Luneburg potential and its semiclassical deflection func-
tion for E< Ecrit

� and E > Ecrit
� (bottom).

152701-3



VOLUME 89, NUMBER 15 P H Y S I C A L R E V I E W L E T T E R S 7 OCTOBER 2002
branch now makes possible the appearance of interfer-
ence effects, and thus of Airy-like structure. The above
discussion shows that classical trajectories with an impact
parameter higher (lower) than bgr are nothing else than
barrier (internal) trajectories, respectively, in agreement
with the interpretation of Ref. [8].

There exists a critical energy Ecrit
� where the effective

potential associated with the imperfect Luneburg poten-
tial loses its pocket at the grazing impact parameter
[because the introduction of the exponential tail has
lowered the barriers of the (bare) Luneburg effective
potentials, this energy is lower than Ecrit]. Above that
energy, which in the 16O� 16O case is about 60 MeV
(c.m.), orbiting disappears, and the deflection function
becomes a continuous function of the impact parameter;
with its two branches separated by an extremum (at � �
�R, Fig. 3), this deflection function can now generate
rainbow scattering and genuine Airy oscillations.
Although each of these (continuously connected)
branches can no more strictly be associated with a barrier
or an internal contribution, it is clear that there is perfect
continuity between the two energy regimes.

The nuclear rainbow is not a perfect analog of the �p �
2� meteorological rainbow, for which one (‘‘nonclassi-
cal’’) reflection takes place within the drop: it corre-
sponds to the second (p � 1) term in Nussenzveig’s
expansion [10], where the only active mechanism is re-
fraction. Another way to convince oneself of the dissimi-
larity of the nuclear and meteorological rainbows is to
observe that their lit sides stand on opposite sides of the
rainbow. The rainbow observed in nuclear physics is thus
closely related to the so-called ‘‘zero-order rainbow’’ [19]
of Newton, who believed in its existence (at an angular
distance of the sun of only 26	), and thought it was
difficult to observe because of the sun glare; however,
because the p � 1 deflection function for the square well
is monotonic, this rainbow is, in fact, inexistent as a
meteor [19], but it eventually comes to life in nuclear
scattering.

To conclude this discussion, we comment on the use of
the Airy terminology to describe the interference struc-
ture seen in elastic light-ion and light heavy-ion scatter-
ing. This interference, like in the meteorological case,
involves the two branches of the classical deflection
function; however, at low energy, the origin of the second
(barrier) branch is very different in the nuclear case, since
it owes its existence to the diffuse tail of the potential, a
phenomenon obviously not present in the meteorological
rainbow, where the two branches of the p � 2 contribu-
tion are associated with qualitatively similar trajectories.
Moreover, the interference minima seen at low energy are
independent from the existence of a nuclear rainbow.
From that point of view, calling these minima ‘‘Airy
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minima’’ is misleading; ‘‘pre-rainbow interference min-
ima’’ could be a more suitable terminology.

As energy increases, the deflection function acquires a
genuine extremum, and a parabolic approximation to the
deflection function around this minimum becomes pro-
gressively more justified; as a result the general structure
of the differential cross section in the region of the rain-
bow angle is now adequately represented by the square of
an Airy function [17]. However, the ‘‘Airy minima’’
observed in this case are those accompanying a p � 1
‘‘nuclear Newton’s zero-order rainbow,’’ a phenomenon
whose existence still relies on the diffuse tail of the
nuclear potential; this feature of the nuclear potential
makes at the same time a nuclear analog of the p � 2
meteorological rainbow unobservable, since the addi-
tional internal reflection needed for producing it would
require a much sharper nuclear surface.
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