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Exact Asymptotics for One-Dimensional Diffusion with Mobile Traps
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We consider a diffusing particle, with diffusion constant D0, moving in one dimension in an infinite
sea of noninteracting mobile traps with diffusion constant D and density �. We show that the asymptotic
behavior of the survival probability, P�t�, satisfies limt!1�� lnP�t��=

�����������
�2Dt

p
	 4=

����
�

p
, independent of

D0. The result comes from obtaining upper and lower bounds on P�t�, and showing that they coincide
asymptotically. We also obtain exact results for P�t� to first order in D0=D for an arbitrary finite number
of traps.
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tained up to now for the constant � in Eq. (1).
Furthermore, attempts to determine � by numerical sim-

based on a path-integral formulation, for the computation
of the exponent 
 in Eq. (2). For small D0=D and arbitrary
The asymptotics of the survival probability, P�t�, for a
particle diffusing among mobile traps is a long-standing
challenge. Over ten years ago Bramson and Lebowitz [1]
showed by rigorous arguments that in one dimension P�t�
has a stretched-exponential decay for large t,

P�t� � exp���t1=2�: (1)

The computation of the constant �, however, has thus far
proved intractable, both analytically and numerically.
This long-standing problem is resolved in this Letter.

The problem addressed by Bramson and Lebowitz was
first posed almost 20 years ago in the seminal paper of
Toussaint and Wilczek (TW) [2]. These authors intro-
duced the two-species annihilation process, A � B ! 0,
as a model of monopole-antimonopole annihilation in the
early Universe, though applications to chemical kinetics
and condensed matter physics are more numerous [3]. TW
showed that if the initial densities, �A�0� and �B�0�, of the
A and B particles are equal (and the particles are ran-
domly distributed in space), the densities decay asymp-
totically as t�d=4 in space dimensions d < 4. If the initial
densities are different, however, the density of the minor-
ity species (A, say) decays much more rapidly.

The connection with the trapping problem is as follows.
At late times �A�t� 
 �B�t� and the A particles can be
regarded as independently diffusing in a background of
the majority B particles, which act as traps for the A
particles by virtue of the annihilation reaction. An
equivalent problem, therefore, is to consider a single A
particle moving among B particles (which do not interact
with each other) and ask for the probability, P�t�, that the
A particle survives to time t. In the context of the original
A � B ! 0 process (or A � B ! B [4], which has the
same asymptotics [1]) the ‘‘particle’’ A and ‘‘traps’’ B
are taken to have the same diffusion constants, but for
generality we will take them to be different, D0 and D,
respectively.

To our knowledge, no analytical result has been ob-
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ulations (or even to confirm the predicted stretched-
exponential decay with exponent 1=2) are severely ham-
pered by large, slowly decaying transients [5–8]. In
Ref. [7], a sophisticated numerical approach enabled
data to be obtained down to P�t� � 10�35, but still the
asymptotic time dependence could not be unambiguously
established.

For this trapping problem, the traps are infinite in
number, and distributed randomly on the interval ( �1,
1) with density �. By contrast, if the number of traps is
finite, the problem is equivalent to the much studied
predator-prey problem [9,10], where the traps are preda-
tors and the particle is the prey. In this case the prey
survival probability decays as a power law,

P�t� � t�
�NL;NR;D0=D�; (2)

where NL (NR) is the number of predators initially to the
left (right) of the prey. To our knowledge the only exactly
solved examples are for NL � NR � 2. Obtaining ana-
lytical results for more than two predators is another long-
standing challenge.

In this Letter we obtain two exact analytical results.
First, we finally resolve the question of the asymptotics of
P�t� for the trapping problem. We verify the asymptotic
form (1), and determine exactly the value of the constant
�, namely, � 	 4��D=��1=2, i.e.,

P�t� � exp��4��Dt=��1=2�: (3)

Note that this asymptotic result depends only on the
density, �, and diffusion constant, D, of the traps and is
independent of the diffusion constant D0 of the particle.
The value of D0, however, does affect the rate of approach
to asymptopia. Equation (3) is derived by obtaining upper
and lower bounds for P�t�, and showing that they con-
verge for large t. Furthermore, the form of the lower
bound suggests why large corrections to the asymptotic
behavior might be expected.

Second, we outline [11] a perturbation theory in D0=D,
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values NL and NR, we find
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�
; (4)

where N 	 NL � NR is the total number of predators and
� 	 NL � NR measures their left-right asymmetry with
respect to the prey.

We will first describe the treatment of the trapping
problem with infinitely many traps. The bounds that
lead to Eq. (3) are obtained as follows.

Upper Bound.—An obvious upper bound, PU�t�, on
P�t�, for any D0, is provided by the problem with D0 	
0, in which the particle stays at its initial position, which
we call x 	 0. Although we have as yet been unable to
make this bound rigorous [12], it is intuitively clear that
when, as here, the traps are (statistically) symmetrically
placed with respect to the particle, the particle will on
average survive longer if it stays still than if it diffuses.
This assertion has been checked, using the algorithm
outlined in Ref. [7], for all (lattice) walks up to time t 	
28. It is also supported by Eq. (4), which shows that for
any symmetric case (� 	 0), the decay of P�t� is faster
for small D0 than for D0 	 0, for any finite N.

For D0 	 0 (sometimes called the ‘‘scavenger model’’
[13] in predator-prey terminology), P�t� is just the proba-
bility that none of the moving traps has reached the origin
up to time t. This problem is exactly soluble [14]. Since
similar techniques will be needed to derive the lower
bound, we outline the solution here.

The N traps move independently according to the
Langevin equations

_xixi 	 �i�t�; i 	 1; . . . ; N; (5)

where �i�t� is Gaussian white noise with mean zero and
correlator

h�i�t��j�t0�i 	 2D�ij��t � t0�: (6)

The quantity P�t� is just the product of the individual trap
probabilities. For a given trap starting at xi, the required
probability is [10] P1�xi; t� 	 erf�jxij=

���������
4Dt

p
�. So our

upper bound is

PU�t� 	
�YN

i	1

erf�jxij=
���������
4Dt

p
�

�
; (7)

where h� � �i means an average over the initial positions of
the traps. Since the xi are also independent, the latter
average also factors. Using N 	 �L, where L is the length
of the system, and each xi is uniformly distributed in
��L=2; L=2�, gives

PU�t� 	
�
1� 1=L

Z L=2

�L=2
dx erfc�jxj=

���������
4Dt

p
�



�L

! exp��4��Dt=��1=2�; (8)

where the final result follows on taking the limit L ! 1.
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Lower Bound.—Consider the same system as before but
with a pair of absorbing boundaries at x 	 �l=2. We
consider the subset of initial conditions in which all the
traps lie outside the interval ��l=2; l=2� (and the particle
is at x 	 0), and trajectories in which neither the particle
nor any of the traps has crossed a boundary up to time t.
We calculate the probability, PL�t�, of such an occurrence
over the ensemble of all initial conditions and trajecto-
ries. These restricted initial conditions and trajectories
are a subset of all the possible initial conditions and
trajectories in which the particle never meets a trap. It
follows that P�t� � PL�t�, i.e., PL�t� is a lower bound.

The probability that there are no traps in the interval
��l=2; l=2� at t 	 0 is exp���l�. Given that there are no
traps in this interval at t 	 0, the probability that no traps
enter the interval up to time t is given by the same result
as in the derivation of the lower bound, namely,
exp��4��Dt=��1=2�. Finally, the probability that the par-
ticle, starting at x 	 0, has not left the interval
��l=2; l=2� up to time t is given, for times t � l2=D0,
by [10] �4=�� exp���2D0t=l2�. Assembling these contri-
butions gives

P�t� � �4=�� exp��4��Dt=��1=2 � ��l � �2D0t=l2��:

(9)

Since this inequality holds for all l, the best lower
bound is obtained by maximizing with respect to l. The
optimum value is l 	 �2�2D0t=��1=3, and the best lower
bound is

PL�t� 	
4

�
exp��4��Dt=��1=2 � 3��2�2D0t=4�1=3�:

(10)

Since the second term in the exponent is negligible com-
pared to the first as t ! 1, the two bounds converge to
yield the asymptotic form, Eq. (3), for P�t�. More pre-
cisely, we can take the logarithm of P�t� and divide out
the leading

��
t

p
dependence to get

4����
�

p � �
lnP�t�

��2Dt�1=2
�

4����
�

p � 3

�
�
2

�
2=3�D0=D�1=3

��2Dt�1=6
; (11)

giving limt!1��lnP�t��=��2Dt�1=2 	 4=
����
�

p
.

As an aside we note that, while the left-hand inequality
in (11) holds for all t, since Eq. (8) does, the right-hand
inequality is strictly a large t result. This is because the
factor �4=�� exp���2D0t=l2� in Eq. (9) comes from the
lowest mode in the Fourier decomposition of the survival
probability of the particle in the interval ��l=2; l=2�. This
mode dominates for D0t � l2, which requires �2D0t � 1.
A lower bound on P�t� valid for all t can easily be written
down by including all Fourier modes, but the large-t form
(10) is sufficient for present purposes.

In Fig. 1, the left and right-hand sides of Eq. (12),
representing the two asymptotic bounds, are plotted and
compared to the numerical data of Ref. [7]. The data are
150601-2
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FIG. 1. Numerical data from Ref. [7] and the upper and lower
bounds, Eq. (12), for D0 	 D. The numerical data were gen-
erated with D 	 D0 	 1=2 and � 	 1=4.
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plotted using the dimensionless time �2Dt, and the axes
are chosen to test the asymptotic form (3). The data lie
between the bounds (except at early times where lattice
effects are important [8]). The bounds displayed are for
the case D0 	 D. The very slow convergence of the
bounds is consistent with the observed trend in the data.

Some comments on Eq. (11) are in order. First, the
right-hand inequality already suggests the possibility
that the approach to asymptopia could be very slow, as
observed in simulations, since the second term vanishes
only as t�1=6. For the case D0 	 D that is usually simu-
lated, the asymptotic result (3) gives, for a dimensionless
time �2Dt 	 104, say, a survival probability of order
10�98. This is far smaller than can be reached in simu-
lations (or experiments) even with sophisticated methods
[7]. Yet even at this large time, the second term on the
right-hand side of (11) is still 39% as big as the first. This
term would give a further factor of 10�38 in the survival
probability, i.e., a total probability of order 10�136. Of
course, this second term is only a bound, and the true
correction to the asymptotic form could be smaller. The
form of the bound is nonetheless suggestive and illustrates
how large subdominant terms could arise. A clearer
understanding of these subdominant terms is necessary
before a detailed comparison with numerical or experi-
mental data can be made.

A second interesting point is that the mean-square
displacement of the particle, averaged over the surviving
trajectories used to derive the lower bound, grows as l2 �
�D0t=��� with � 	 2=3. This can be compared with the
estimate � 	 0:5 to 0.6 obtained from recent simulations
[7]. Note, however, that these simulations were not in the
asymptotic regime, so the numerical estimates should be
treated with caution. Furthermore, the value � 	 2=3
obtained from the lower bound for P�t� does not neces-
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sarily represent any kind of bound for �. Nevertheless,
the rough agreement between the measured value and
that obtained from our very simple arguments is again
suggestive.

Our approach is also readily generalized to dimensions
d > 1 [11]. For d < 2 we find P�t� � exp��ad��Dt�d=2�,
where ad 	 �2=�d��4��d=2 sin��d=2� while, for d 	 2,
P�t� � exp��4��Dt= lnt�. The latter agrees with the
functional form obtained in [1], but with a precise value
for the constant. For d > 2, simple exponential decay is
obtained, in agreement with [1], but the bounds no longer
converge and the decay constant cannot be determined.

In the remainder of this Letter we sketch [11] the
derivation of the perturbation theory, for a finite number
of traps, that leads to Eq. (4). We recall that the N traps
move independently according to Langevin equations (5)
with noise correlator (6). We call the particle coordinate
x0�t�. It obeys the Langevin equation _xx0 	 �0�t�, where
�0�t� is independent of the other noise terms, with corre-
lator h�0�t��0�t0�i 	 2D0��t � t�, corresponding to a par-
ticle diffusion constant D0. It is convenient to introduce
the relative coordinates yi 	 xi � x0, i 	 1; . . . ; N. The
corresponding Langevin equations are _yyi 	 �i�t� where
the noise terms, �i�t� 	 �i�t� � �0�t�, have correlators

h�i�t��j�t
0�i 	 2Dij��t � t0�; (12)

where Dij 	 D�ij � D0. The equivalent Fokker-Planck
equation, @P=@t 	

P
N
i;j	1 Dij @2P=@yi@yj, has to be

solved subject to absorbing boundary conditions at yi 	
0 for any i (i.e., when any trap meets the particle). In
principle, this equation can be solved by a coordinate
transformation that diagonalizes the matrix D to give
isotropic diffusion. This transformation, however, also
rotates the edges of the absorbing region so that they
are no longer mutually orthogonal but form the edges of
an N-dimensional wedge. For N 	 2, the problem can be
solved exactly [9,10], but to our knowledge there are no
exact solutions for N � 3.

An alternative starting point is the path-integral rep-
resentation for the survival probability of the particle,

P�t� 	

R
R D~yy�t� exp��S� ~yy��R
D~yy�t� exp��S� ~yy��

; (13)

where ~yy is a shorthand for �y1; . . . ; yn�, S� ~yy� 	
�1=4�

PN
i;j	1�D

�1�ij
R

t
0 dt0 _yyi�t

0� _yyj�t
0�, and the subscript

R indicates that the path integral is restricted to
‘‘surviving’’ paths, in which none of the yi has changed
sign up to time t. The matrix D is easily inverted to give
�D�1�ij 	 �1=D���ij � ��, where � 	 D0=�D � ND0�
will be our expansion parameter. Thus

S� ~yy� 	 S0� ~yy� � S1� ~yy�; (14)

S0� ~yy� 	
1� �
4D

X
i

Z t

0
dt0 � _yyi�t

0��2; (15)
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S1� ~yy� 	
�
2D

X
i<j

Z t

0
dt0 _yyi�t0� _yyj�t0�; (16)

where the diagonal terms, i 	 j, have been absorbed
into S0.

A convenient normalization of the path integral is
provided by the path integral for the survival probability,
P0�t� � t�N=2, of the same problem with D0 	 0 and D !
D0 	 D=�1� ��. Then

P�t�
P0�t�

	
hexp�S1� ~yy��iR
hexp�S1� ~yy��i

; (17)

where the average in both cases is over paths weighted by
exp��S0� ~yy��.

The final step is to expand the numerator and denomi-
nator using the cumulant expansion. To first order in �
(i.e., first order in S1) one has

P�t�=P0�t� 	 exp�hS1iR � hS1i�: (18)

Since the different values of i decouple in S0 we have

hS1iR 	 ��=2D�
X
i<j

Z t

0
dt0 h _yyi�t

0�iRh _yyj�t
0�iR: (19)

The corresponding expression for the unrestricted paths
vanishes, since h _yyi�t

0�i 	 0 by symmetry. The quantity
h _yyi�t0�iR is independent of i apart from the sign:
h _yyi�t0�iR > 0 ( < 0) for traps that stay to the right (left)
of the particle. The calculation of h _yyi�t0�iR is straightfor-
ward. We require the result only in the regime t0 
 t0 

t, where t0 	 y2i0=D and yi0 is the initial value of trap i. In
this regime one finds (for traps which start on the right of
the particle) [11]

h _yyi�t0�iR 	 2�D0=�t0�1=2; t0 
 t0 
 t: (20)

We now insert this result into Eq. (19). Let there be NL
(NR) traps to the left (right) of the particle. Then the
�NL�NL � 1�=2� NR�NR � 1�=2� pairs �i; j� of traps
whose members are on the same side of the particle
contribute with positive weight to (19) while the NLNR
pairs whose members are on opposite sides enter with
negative weight. Defining � 	 NL � NR (and N 	 NL �
NR) this gives

hS1iR 	
�D0

�D
��2 � N� lnt (21)

to leading logarithmic accuracy for large t. The factor lnt
comes from the integral

R
t
t0
�dt0=t0� that appears when

Eq. (20) is substituted into Eq. (19). Using the form (20)
for all t0, with t and t0 as upper and lower cutoffs, is
correct to leading logarithmic accuracy [11]. Note that the
contributions from the lower cutoff, which depend on the
initial positions of the traps, do not contribute to the
leading logarithm. Using (21) in (18), recalling that
hS1i 	 0 and P0�t� � t�N=2, and noting that, to leading
150601-4
order in D0, � 	 D0=D and D0 	 D, one finds P�t� � t�


with 
 given by Eq. (4). The power-law decays hold when
t � y20i=D for all i. The magnitudes of the initial coor-
dinates y0i determine the amplitude of the power law,
while their signs determine the exponent through the
value of �.

Equation (3) can be compared with the exactly solved
cases NL 	 NR 	 1 (‘‘surrounded prey’’) and NL 	
0; NR 	 2 (‘‘chased prey’’) [9,10], for which 
 	 �=2#
and ��=2�� � #��, respectively, where # 	
cos�1�D0=�D � D0��. Expanding these to first order in
D0 gives agreement with Eq. (4).

In summary, we have obtained the exact asymptotic
form of the survival probability of a particle moving in an
infinite background of mobile traps. The asymptotic form
is independent of the diffusion constant of the particle. A
perturbation expansion in the ratio of the particle and
trap diffusion constants has been developed for the case
of a finite number of traps.
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