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Instability of a Lamellar Phase under Shear Flow: Formation of Multilamellar Vesicles
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The formation of closed-compact multilamellar vesicles (referred to in the literature as the “onion
texture”’) obtained upon shearing lamellar phases is studied using small-angle light scattering and
cross-polarized microscopy. By varying the shear rate , the gap cell D, and the smectic distance d, we
show that: (i) the formation of this structure occurs homogeneously in the cell at a well-defined wave
vector g;, via a strain-controlled process, and (ii) the value of g; varies as (d/D)'/?. These results
strongly suggest that formation of multilamellar vesicles may be monitored by an undulation (buckling)
instability of the membranes, as expected from theory.
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Lyotropic lamellar phases consist of a periodical stack-
ing of flexible fluid membranes intercalated by solvent [1].
Since the lamellae are very flexible, the structure of these
phases can be strongly affected by weak shear flows [2].
Above a critical shear rate, they undergo a transformation
leading to a state of monodisperse multilayered vesicles
(MLVs) referred to in the literature as ‘“‘onion texture”
[3]. A wide amount of work has been performed to de-
scribe and characterize the couplings between structure
and flow in such systems [4—8]. Yet the physical mecha-
nism of the formation of MLVs is still under debate. A few
years ago, inspired by the pioneering work of Oswald
et al. on smectic-A phases [9], some authors have conjec-
tured that it may result from the existence of a nonuni-
form gap spacing [2,10,11]. In equilibrium, this spatial
variation in the gap is accommodated by the existence of
dislocations which can move at low shear rates. However,
when the shear rate becomes too high, these dislocations
cannot follow the flow any more and this gives rise to a
dilative strain perpendicular to the layers, triggering the
buckling (or undulation) instability. Because of its resist-
ance to the flow, the buckling pattern cannot sustain flow
and likely rolls up into MLVs. Recently, Zilman and
Granek [12] have proposed another buckling mechanism
which exists even at a uniform gap, based on the coupling
between thermal undulations of the membranes and the
flow. According to them, the suppression by the flow of
the short wavelength membrane undulations [13,14] re-
sponsible of the membrane excess area generates an ef-
fective lateral pressure. Above a critical shear rate, this
pressure can no longer be balanced by the elastic forces of
the lamellae and leads to a buckling instability similar to
that obtained by dilative strain.

So far, very few experiments have focused on the dy-
namics of formation of MLVs. Bergenholtz and Wagner
[4] and Zipfel et al. [15] have shown that the formation of
onions is strain-controlled but they have not identified the
exact nature of this mechanism. On the other hand, Léon
et al. [7] conclude that the shear-induced gelation they
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observed in a dilute lamellar system made of sodium
bis(2-ethylhexyl) sulfosuccinate (AOT) and brine occurs
via a nucleation process, a result which is in contradiction
with theoretical expectations [3,10-12,16]. As is evident,
the nature of the mechanism leading to MLVs remains
still unclear and deserves further investigation. To eluci-
date this, we study the formation of MLVs in a lamellar
phase stabilized by undulation interaction, using rheo-
physics techniques, small-angle light scattering (SALS),
and optical microscopy.

Experiments.—The experiments are performed in a
quaternary liquid mixture made of sodium dodecyl-
sulfate (SDS), pentanol, dodecane, and water. For a
water/SDS ratio of 1.55, the phase diagram of the mix-
ture [17] exhibits a very large lamellar domain. We pre-
pare an initial lamellar phase whose composition in
weight fraction is 15.1% SDS, 23.35% water, 14.55%
pentanol, and 47% dodecane. This phase is stabilized by
undulation interactions [18] and its smectic distance, d,
can be continuously changed by dilution with the solvent
(91% wt dodecane and 9% wt pentanol) from typically 50
up to a few hundreds of A. Using small-angle x-ray
scattering [19], it has been shown that the logarithmic
correction due to the excess area induced by the strong
thermal fluctuation of the flexible membranes leads to the
following variation of d, with the membrane volume
fraction, ¢,,:

d(A) = 35.6 — ;9ln(¢m). 0

Along this dilution line, the membrane thickness 6 re-
mains fixed (6 =26 A) and the membrane bending
modulus is about « = 0.2kpT [19], where kgT is the
thermal energy. The effect of shear flow in this system
is summarized in a so-called shear diagram [3]. At low
shear rates, the lamellae are mainly oriented perpendicu-
lar to the shear gradient direction. Above a critical shear
rate ¥, they roll up to form closed-compact MLVs (onion
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texture). Their size is fixed by ¥ and can vary from a few
pm to a tenth of it.

SALS experiments are performed under shear flow
with a homemade transparent Couette cell [8]. The fixed
inner cylinder of radius 25 mm is cone shaped at its lower
end. The outer cylinder rotates at constant angular veloc-
ity w and can be changed in order to obtain narrow gaps
D, ranging from 0.5 to 2 mm. Both cylinders are thermo-
stated at 7 = 25.0 = 0.1 °C using a water bath. A circu-
larly polarized He-Ne laser beam (wavelength A =
632.8 nm in vacuum) passes through the cell along the
shear gradient direction and probes the sample in only
one of the gaps. The unpolarized scattered pattern corre-
sponding to light scattered in the velocity-vorticity (V, Z)
plane is digitized, by means of a CCD video camera
coupled to a computer for the frame acquisition. Two
linear electrodes mounted diametrically on the stator
and connected to a Hewlett Packard 4192 impedance
analyzer allow us to follow the variation with time and
shear rate of the electrical conductivity along the velocity
direction [20].

The lamellar phase is stirred and then left at rest for
about a week to ensure equilibrium. Then the solution is
poured into the Couette cell and sheared at a constant
shear rate (typically y, = 0.4 s~1) below the threshold
¥. (of the order of 1 s~!) above which MLVs form, until
the corresponding steady state (oriented lamellae) is
reached. Conductivity measurements and SALS experi-
ments performed under flow enable us to check that this
initial oriented steady state is obtained; i.e., the conduc-
tivity becomes constant and no ring, characteristic of the
onion texture, is observed in the SALS pattern. Then in
order to form MLVs, the shear rate is suddenly increased
to a value ¥ = .. This procedure allows us to follow the
MLVs’ formation from an oriented lamellar state with
reproducible initial conditions.

Results.—Figure 1 shows the evolution of the SALS
pattern following such a quench in shear rate for d =
95 A and D = 1 mm. First, in agreement with observa-
tions made by Zipfel et al on another lamellar system
[15], we observe a strong enhancement of the intensity
scattered at very small angles, the scattering pattern
being slightly elongated along the vorticity direction.
After a well-defined time delay ¢,, a Bragg ring appears
suddenly at a finite wave vector ¢ = ¢;, indicating the
emergence of a characteristic length scale in the solution.
Note that, once the shear rate is stopped, this ring persists
with the same radius for at least a few hours. Optical
microscopy has been performed under shear (in situ) us-
ing a commercial rheovisiometer with a cone-plate cell
[20]. Observations, made at ¢z, between crossed polarizers,
reveal a homogeneous modulation of the optical index in
the whole cell [Fig. 2(b)] exhibiting a characteristic
wavelength R; = 27/q;. This texture [Fig. 2(b)] is char-
acteristic of an assembly made of monodisperse closed-
compact MLVs of size R; [3]. Upon a further shearing, the
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FIG. 1. Emergence and growth of the Bragg peak, ¢, as a
function of time when ¥ = 6 s~ ! is applied to a L, phase with
d = 95 A which has been previously sheared at 0.4 s~ for 12 h.
t = 0 corresponds to the quench in shear rate (see inset). Insets:
SALS patterns observed in the (V,2) plane (a) t = 450 s,
(b) t=1,=880s, (c) t=9300s, and (d) t = 69000 s. ¢,
corresponds to the time at which the scattering ring first
appears; g; is its position.

scattering ring moves continuously to larger wave vectors
until it reaches its final position, g. This shift shows that
once the closed-compact vesicles are formed, their size
decreases continuously until a mechanical balance be-
tween viscous and elastic stresses is reached [Figs. 2(c)
and 2(d)]. On the other hand, observations made under
shear flow just before 7, do not reveal the presence of large
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FIG. 2. Optical microscopy images of the L, phase obtained
in the rheovisiometer at different times ¢ after ¥ = 8 s™! is
applied: (a) for t <t,, (b) at t = ¢,, (c) for t > ¢,, and before
reaching the final steady state (d) after reaching the final size.
Magnification is (X10) and (X20) in insets.
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FIG. 3. Positions of the emergent and final Bragg rings, ¢;

(@) and qy (O), as a function of . The solid lines correspond
to the best power law fits: ¢; & 7!/ and g; o ¥!/2. The system
is that of Fig. 1.

isolated vesicles [Fig. 2(a)]. Contrary to Ref. [7], the
formation of the onion structure in our system does not
therefore occur through the nucleation of large isolated
vesicles [21]. Figure 3 shows the variations of g, and
q; versus 7. gy is consistent with 12 as previously
published [3,4], whereas g; scales as 7!/3. In order to
investigate the variation of g; with parameters that char-
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FIG. 4. Shown is ¢; as a function of 7!/ for D = 1 mm and
for different d: (@) d =73 A, (O)d =189 A, (A) d =111 A,
and () d = 159 A. Inset: Shown is the slope S(d), which
corresponds to the slope of the best linear fit: ¢; = S(d)y'/?
versus d'/3.
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acterize the system and the experimental setup, we work
first with lamellar phases having different smectic dis-
tance d. For a given value of 7, Fig. 4 shows that the value
of g; increases with d. When we plot g; versus d, we find a
d'? dependence, as can be seen in the inset in Fig. 4. We
then change the gap spacing D of the cell, fixing d =
111 A. For a fixed shear rate, we observe that the value of
g; decreases with D and is consistent with ¢; « D~1/3 (see
inset in Fig. 5). Finally, all results can be summarized if
we plot g; versus (yd/D) (Fig. 5). In this double-
logarithmic plot, all the data collapse on a master line
having a slope of 1/3: i.e., g; = A(yd/D)'/3. The dimen-
sion of the prefactor A corresponds to the ratio of a time
by a length to the power one-third. Since it likely depends
on a shear viscosity  and on an energy (likely the
membrane bending modulus «), this dimensional analysis
yields to ¢; = a(nyd/Dk)'/?, where a is a numerical
constant.

Discussion.—As already evidenced by Zipfel et al. [15],
our observations demonstrate that the transition from
oriented lamellar state to a state of MLVs involves at least
two steps. First, an intermediate state characterized by a
vertical streak in SALS is formed. This observation is
compatible with the existence of an initial stripe buckling
that subsequently breaks the layers and stabilizes elon-
gated structures along the flow direction [16]. Then this
intermediate state transforms into MLVs as the shear
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FIG. 5. Master curve: g; represented in a log-log plot as a

function of (dy/D) for different d and D values: (O) D =
1 mm and the different values of d are 73, 83, 89, 95, 111, 131,
and 159 A, (@) D = 0.5 mmandd = 111 A, (A) D = 1.5 mm
andd =111 A, and () D =2 mm and d = 111 A. The slope
is consistent with 1/3. The best fit of such a power law gives
g; = 50(yd/D)'/. Inset: Shown is ¢; as a function of ¥/3 for
d =111 A and different values of D. Symbols are identical to
before.
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FIG. 6. Shown is ¢, as a function of (yd)~! for different d and
D: (@) D=1mmand d=159 A, (O) D=1mm and d =
131 A, (A) D=2mm and d= 111 A, (0) D=1 mm and
d=289A,and @) D=1mmand d =73 A.

continues. In agreement with several previous studies
[4,15], our data indicate that this second step is strain
controlled. Contrary to the results of Léon ef al [7], the
MLV formation in our system is not due to a nucleation of
large isolated vesicles but occurs homogeneously in the
cell at a given wave vector, g;. A systematic study of #,,
the time necessary to reach the critical strain y, = 1,
required to form MLVs, shows that y, does not depend on
the gap spacing D and varies as the inverse of d (Fig. 6).
The expression of g;, obtained from dimensional argu-
ments, bears striking similarities to that derived by
Zilman and Granek [12] for the most unstable wave
vector of the so-called buckling effect. Using a nonlinear
analysis, these authors have shown that above the insta-
bility threshold (i.e., for ¥ = y,.), the buckling wave-
length varies as
1/6
1" @

where B, K, and b represent, respectively, the compres-
sion modulus at constant chemical potential, the smectic
splay constant, and a numerical factor which depends on
the lattice used in their model. Our dimensional analysis
leads to a result in fairly good agreement with Eq. (2), if
one recalls that for a lamellar phase stabilized by undu-
lations [22]:

17ZBd4

= b4 1/3|:
95 = Y T KD (kyT)?

97T2(kBT)2 d_3
64«

For our system, all the parameters involved in Eqs. (2)
and (3) are known. Using k = 0.2kzT, n = 1072 Pa - s,

B = and K = k/d. Q)

148305-4

and taking b = 2.6 (for a stripe buckling [22]), we get
from Eq. (2) g = 7(yd/D)"?, whereas experimental
observations give ¢; = 50(yd/D)'/? (see Fig. 5). To con-
clude, our data validate the two-step mechanism at the
origin of formation of MLVs, expected from theory
[3,11,12], namely, a buckling instability followed by the
rolling up of the unstable buckled structure into MLVs.
The formation of MLVs occurs in our system homoge-
neously in the shear cell at a well-defined wave vector g;
scaling like the most unstable wave vector of the primary
buckling instability [11]. These striking similarities
strongly suggest that the most unstable wave vector of
the buckling instability monitors the initial size of MLVs,
as already inferred by Zilman and Granek [12]. These
very general results could have important significance for
controlling and predicting the kinetics of the onion phase
formation.
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