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Morphological Diversity of DNA-Colloidal Self-Assembly
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We study theoretically a binary system in which an attraction of unlike particles is combined with a
type-independent soft-core repulsion. The possible experimental implementation of the system is a
mixture of DNA-covered colloids, in which both the repulsion and the attraction may be induced by
DNA solution. The system is shown to exhibit surprisingly diverse and unusual morphologies. Among
them are the diamond lattice and the membrane phase with in-plane square order, a striking example of
spontaneous compactification.

DOI: 10.1103/PhysRevLett.89.148303 PACS numbers: 82.70.Dd, 81.16.Dn, 87.14.Gg
soft-core repulsion. We consider only structures with a 1 :
1 composition. Let rk be a distance to the kth nearest

only crystalline morphologies, in which all the sites are
equivalent.
Colloidal self-assembly has attracted a lot of interest
across several disciplines. It is widely used as a model
system for study of crystallization and glassiness [1]. It
also has a great technological potential, e.g., as a fabrica-
tion technique for photonic band gap materials [2]. A
monodisperse colloidal system would typically crystallize
into a closed-packed structure or body-centered cubic (bcc)
lattice [1,3]. In this Letter, we propose a system which
combines relatively simple interactions with considerably
more diverse and unexpected phase behavior.

Our study is inspired by a recent experimental demon-
stration of DNA-assisted self-assembly of nanoparticles
[4,5]. The key elements of that scheme are submicron
spheres covered with short single-stranded DNA
‘‘markers.’’ The marker sequence determines the particle
type (there may be many markers per particle, but their
sequences must be the same). One can now introduce type-
dependent interactions between the particles by adding
‘‘linker’’ DNA molecules, whose ends are complementary
to the corresponding markers. These interactions are very
selective, reversible, and tunable.

In the first part of this Letter, we discuss a generic model
in which the physical origin and details of the interparticle
interactions are largely ignored. Let us consider a binary
system of hard spheres, of the same diameter d, in which
the particles belonging to different types (A and B) may
create a reversible contact with binding energy �E. On the
other hand, let same-type particles repell each other with a
soft-core potential, U�r�. We study the phase behavior of
the system for various values of two parameters: the aspect
ratio, d=� [� is the range of potentialU�r�], and the relative
strength of the attraction, E=U0 [hereU0 � U�d�]. Later in
the Letter, we discuss how this system can be implemented
experimentally. Our specific proposal is to use DNA to
introduce type-dependent attraction, and polymeric brush
(possibly, also made of DNA) to induce the repulsive
potential.

The nontrivial phase behavior of the discussed system is
a result of interplay between the adhesive energy and the
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neighbor of a particle in a given structure (r1 � d), let Zk
be the average number of such neighbors, and let Z be the
average number of cohesive contacts per particle (coordi-
nation number). If the entropic effects are neglected, the
energy per particle (i.e., the average chemical potential of
A and B particles) is given by
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Here, we have neglected the contribution from the in-
teractions with the particles beyond the second nearest
neighbors, which is a reasonable approximation for d=��
1. In order to assure its validity, we have performed an a
posteriori check of the effect of the higher-order correc-
tions on our results. It is straightforward to use the above
equation to identify the phase boundary between two dif-
ferent structures. Since the chemical potential should be
continuous at the transition, one can express the critical
value of adhesive energy E in terms of the geometrical
parameters (Z, Z2, and r2) of the two phases
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2U�r
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2� � Z2U�r2�
Z0 � Z

: (2)

The task of identifying all plausible morphologies of our
system is clearly more challenging than comparing them
energetically. There is hardly any systematic way of doing
this. Nevertheless, one can considerably limit the search by
making a number of assumptions based on general prin-
ciples [6]: (i) In order to avoid the direct contacts between
the same-type particles, the structures should be bipartal;
i.e., they should consist of two sublattices corresponding to
the two types of particles, so that all the nearest neighbors
were of the opposite types; (ii) all the nearest neighbors
should have the same bond length; This is needed to take
advantage of the cohesive energy, as long as we model the
particles as rigid sticky spheres; (iii) since the equilibrium
structure is likely to possess a high symmetry, we consider
 2002 The American Physical Society 148303-1



VOLUME 89, NUMBER 14 P H Y S I C A L R E V I E W L E T T E R S 30 SEPTEMBER 2002
Note that in the limit of a large aspect ratio, among
various phases with the same coordination number Z, the
one with the largest r2 is energetically preferred, independ-
ently on the number of the second nearest neighbors (Z2).
Since r2 typically decreases with Z, the transition value of
E, given by Eq. (2), asymptotically reaches the value
Z2U�r2�, determined by the parameters (Z2, r2) of the
higher Z phase. One can conclude that the sequence of
the phases in the large aspect ratio regime is generic and
should be independent of the particular choice of the
repulsive potential: bcc (Z � 8); simple cubic (sc, Z �
6); honeycomb stacking (HS, Z � 5); diamond (D, Z �
4). The prediction of a self-assembled diamond lattice is
especially exciting, because of its potential as a photonic
bad gap structure [2]. No true phase transitions are ex-
pected for Z < 3 because of the low dimensionality of the
dominant structures.

As the aspect ratio D=� is being decreased, other equi-
librium phases may appear. Figure 1(a) shows the phase
diagram obtained for the exponential potential, U�r� �
U0 exp	��r� d�=�
. One feature which is particularly
(a)

(b)

FIG. 1 (color online). Calculated phase diagram of the system
for exponential (a) and Gaussian (b) forms of the repulsive
potential U�r�.
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striking is that at a certain aspect ratio, the system under-
goes a transition from 3D diamond lattice to quasi-2D
membrane with in-plane square order (SQ). Even though
this order is known to be strongly affected by long-range
fluctuations [3], these fluctuations do not give any diver-
gent contributions to the chemical potential of the 2D
phase. Moreover, the entropy gain due to relatively strong
out-of-plane fluctuations makes the SQ phase more favor-
able than an alternative 3D structure with a locally identi-
cal single-particle neighborhood [which can be constructed
by starting with a cubic lattice and removing all the sites
with indices �2n; 2m; 2k� and �2n� 1; 2m� 1; 2k� 1�]
[7]. The D-SQ transition which involves a change in
effective dimensionality of the structure may be called
spontaneous compactification. It is remarkable that, unlike
similarly looking lipid membranes, the predicted quasi-2D
phase is built by particles with isotropic effective interac-
tions. Similarly, the diamond phase in our system is a result
of the interplay of relatively simple isotropic potentials, in
striking contrast with diamond morphologies found in
nature. Recent studies indicate that the diamond phase
can also be self-assembled from star polymers [8]. It is
possible that the underlying physics in the two cases is
similar.

As we have argued, the major features of the obtained
phase diagram should be quite independent of the choice of
the repulsive potential. To check this, we have studied the
phase behavior for two types of soft-core repulsion, ex-
ponential and Gaussian, U�r� � exp	��r� d�2=2�2
 (see
Fig. 1). The major difference is that the square lattice (SQ)
completely disappears in the Gaussian case. On the other
hand, the diamond lattice (D) significantly expands at the
expense of the SQ and HS phases. This trend appears to be
generic: the balance between the two competing Z � 4
phases, D and SQ, shifts towards diamond for potentials
with a superexponential decay, while the region of stability
of SQ expands for subexponential U�r� (such as power
laws, stretched exponential, or Yukawa interaction).

It should be pointed out that the above results cannot be
interpreted as a perturbation of a well-studied phase dia-
gram of the purely repulsive system. In that case the phase
transitions are dominated by entropic effects. The behavior
of the repulsive system is essentially lyotropic, i.e., the
principle control parameter is osmotic pressure (or average
density), and the crystallization is impossible without com-
pression. In our case, the thermal corrections were ne-
glected, and the osmotic pressure was assumed to be
virtually zero. More precisely, the predicted crystals would
coexist with the gaseous phase of an exponentially low
volume fraction, �
 exp��=kT�. As long as the applied
osmotic pressure remains well below kT=d3, it is not
expected to make any effect on the phase diagram. Note
that within our original model, all the crystalline phases
have zero compressibility. Since the particles were mod-
eled as rigid spheres, the bond length had to be exactly
equal to the diameter d. It is, however, quite easy to
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generalize this model by assuming a finite bond rigidity, �.
This is equivalent to the (morphology-dependent) renorm-
alization of the repulsive potential: ~UU�r� � U�r� �
Z2�dU=dr�2=2�Z, and the phase behavior does not change
qualitatively as a result of this modification [7]. Similarly
one can check that the results are robust with respect to the
introduction of modest thermal fluctuations.

We now proceed with the discussion of a plausible
experimental implementation of the proposed system. As
we have already mentioned, type-dependent ‘‘DNA bridg-
ing’’ of colloidal particles is an appealing way to introduce
the AB attraction. As to the soft repulsive potential, here we
focus on a particular scenario in which this interaction is
also induced by DNA. Namely, in addition to linker mol-
ecules we introduce DNA with only one ‘‘sticky end’’
(complementary to either A or B markers). These one-
arm molecules do not result in bridging and play the role
of a buffer (see Fig. 2). We will assume that both the buffer
DNA and the linkers are double stranded, with the excep-
tion of the short terminal segments. The strength of the
interaction of these sticky ends with the complementary
markers can be characterized by DNA concentration c0, at
which the condensation would occur (i.e., when the chemi-
cal potential of an adsorbed chain would become equal to
that in the solution). If the actual concentration of the
buffer DNA, c, is much lower than c0, the number of the
adsorbed chains per particle is N � Nmaxc=c�0�. Here Nmax

is the total number of markers per particle. For the sake of
simplicity, we assume that Nmax and N are the same for A
and B particles, i.e., cA=cB � c�0�A =c

�0�
B . It is very important

that both linker and buffer-DNA molecules adsorb to the
particles reversibly, so that the experimental time is long
enough for our subsystem to reach an equilibrium with
DNA solution.

A double-stranded DNA molecule can be described as a
Gaussian chain, as long as its length L exceeds the persis-
"markers"

"linkers"

"buffer"DNA

B

A

B

FIG. 2 (color online). Suggested experimental scheme.
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tence length, lp ’ 50 nm, and the probability of self-
crossing, sL1=2=l3=2p , remains small (s
 1 nm is an effec-
tive cross section). In other words, the excluded volume
effects are negligible for L� l3p=s2 
 103lp. Thus, the
adsorbed DNA molecules can be treated as phantom
Gaussian chains, which interact only with hard surfaces
of the particles, but not with each other. Since the adsorp-
tion is reversible, the confined chains are being ‘‘squeezed
out’’ when the gap between two particles, r� d0, becomes
comparable to the gyration radius of the DNA chain, Rg. A
detailed discussion of the energetic penalty associated with
this depletion can be found in Ref. [9]. As is shown there,
the corresponding repulsive potential can be calculated in
the spirit of Deryagin approximation, [10] (from now on,
we distinguish bare particle diameter, d0, and bond length
d):

U�r� ’ 2NkT
Rg
d0

Z 1

�r�d0�=Rg

�
1� exp

�
�
W���

kT

��
d�: (3)

Here W��� is the free energy penalty for the confinement
of a Gaussian polymeric chain between two walls at sepa-
ration Rg�. It can be obtained by using the Schrödinger-
like description of the ideal polymer [11,12]:
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The resulting repulsive potential is shown in Fig. 3.
The attractive potential induced by the linker DNA can

be calculated in a very similar manner. Important differ-
ences are that one has to take into account the elastic
energy of a stretched linker, Wel��� � 3kT�2=2, and that
the condensation concentration of the chains with two
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FIG. 3 (color online). Repulsive, U�r�, and attractive, UAB�r�,
potentials induced by DNA-particle interactions. The solid lines
correspond to R0

g=Rg � 1. Note the barrier in the attractive
potential for R0

g=Rg � 0:5 (dashed line).
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sticky ends is given by c�0�AB � c�0�A c
�0�
B R

03
g . Note that in a general case the gyration radius of a linker DNA, R0

g, may be
different from Rg.

UAB�r� ’ U�r� �
2N2

maxkT
3

cAB
c�0�AB

�
Rg
d0

�
3
�

Z 1

�r�d0�=Rg

exp

�
�
W��� �Wel���

kT

�
d�: (5)
As one might expect, the tail of repulsive potential U�r� is
well described by a Gaussian with the characteristic length
scale � ’ Rg:

U�r� 
 exp

�
�

3

2

�
r� d
Rg

� �
�
2
�
: (6)

Here d is the effective diameter which is determined by the
position of the minimum of UAB�r�, and the bias � ’
0:15� �d� d0�=Rg. For the case R0

g=Rg � 1, shown in
Fig. 3, � ’ 0:6. Thus, the corresponding phase diagram
should be somewhere halfway between the Gaussian and
exponential ones. By increasing the ratio R0

g=Rg one can
move the system more towards the exponential regime,
because the position of the minimum changes roughly
linearly with the radius of the linker DNA. However, the
dynamic range of R0

g=Rg is rather limited: the long linkers
would result in the additional attraction beyond the nearest
neighbors, which would violate our initial assumptions. At
the opposite regime, R0

g < Rg, the particles need to over-
come a significant energetic barrier before they start feel-
ing the attraction (see Fig. 3). The existence of this barrier
is the major reason why we suggest to use linkers of at least
several persistence lengths (i.e., about 1 kBase for
dsDNA). In this case, the Gaussian description is appli-
cable. As we have shown, when the gyration radius of the
linkers matches the scale of the repulsive potential, the
particles may create a bound state without the need of
overcoming any barrier. If the linkers are made of
double-stranded DNA, the optimal length scales are �

lp 
 0:1 �m and d
 1 �m

According to Eqs. (3)–(5), the relative strength of the
attraction and the repulsion is controlled by the ratio of the
concentrations of the linkers and buffer DNA:

E
U0

�
cAB
~ccAB

� 1: (7)

Here ~ccAB is the linker concentration at which E vanishes.
This concentration can be determined experimentally by
observing the process of dimer binding/unbinding. If R0

g �
Rg, ~ccAB ’ cAcBR

6
g=d

3. Thus, by changing the ratio
cAB=cAcB, one can tune the control parameter E=U0.

The fundamental time scale of the problem is deter-
mined by the lifetime of the AB bond,

�0 ’
 dR02

g

kT
exp

�
E
kT

�

10 s: (8)

Here  is the solvent viscosity, and the trial frequency is
assumed to be limited by the particle diffusion rather than
148303-4
by the desorption rate of a linker DNA. At physiological
conditions, this requirement limits the marker sequence to
approximately ten bases. Note that at the optimal regime
the characteristic energy scale U0 
 E should be compa-
rable to kT. The true relaxation time of the system is
determined by slow aggregation and growth processes,
and it might be much longer than �0. However, the crystal
growth may be substantially accelerated by epitaxial nu-
cleation near commensurate substrate [13], or by certain
annealing procedures.

The author is grateful to P. Wiltzius, C. Henley, B.
Shraiman, and Z. Chen for the useful discussions and
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