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Mesoscale Simulations of Surfactant Dissolution and Mesophase Formation
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The evolution of the contact zone between pure surfactant and solvent has been studied by mesoscale
simulation. It is found that mesophase formation becomes diffusion controlled and follows the
equilibrium phase diagram adiabatically almost as soon as individual mesophases can be identified,
corresponding to times in real systems of order 10 us.
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When pure surfactant comes into contact with water,
mesophases appear at the interface. This is an important
process not only for the practical use of surfactants, but
also from the point of view of fundamental surfactant
phase science. Indeed, contact “flooding” or penetration
scan experiments can yield quantitative information on
mesophases as a function of composition [1]. The phe-
nomenon seems to be invariably diffusion controlled in
the sense that the widths of the mesophases follow r!/2
growth laws, and adiabatic in the sense that the local
composition determines the mesophase boundaries ac-
cording to the equilibrium phase diagram [2-4]. But
penetration scan experiments are restricted to observation
times of minutes to hours: What happens on time scales
shorter than this? How early does diffusion control set in,
and how soon can one expect the mesophase boundaries
to track the local composition adiabatically? Such ques-
tions are not just of scientific interest since time scales of
seconds or less are important in modern processing and
the everyday use of surfactants, for instance, determining
how rapidly washing powder dissolves. Experimentally,
this regime is very difficult to access because of the short
time scales and the relatively small amounts of meso-
phase involved. To probe these questions, we have there-
fore undertaken novel mesoscale simulations of
surfactant dissolution. We find adiabatic diffusion control
is established remarkably rapidly in our model, on time
scales in which only a few repeat units of the growing
mesophases have appeared, corresponding to times in the
real systems of order 10 us.

The model we have used is a “minimalist” particle-
based model of a binary surfactant/water mixture [5],
based on the dissipative particle dynamics (DPD) method
[6,7]. In DPD, the particles are soft spheres, interacting
with pairwise soft potentials of the form U = %A(l —
r/r.)? (r < r.), where ris the particle separation, r, is the
range of the interaction, and A the amplitude. In the
model, we have three species of particles: A, B, and C.
The A and B particles are bound together in pairs as
dimers with a fixed separation r,;, and represent the sur-
factants. The C particles are monomers representing the
solvent (water). The different species are distinguished by
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their interaction amplitudes, and the trick is to find a set
of amplitudes which recover suitable phase behavior.
Following earlier work [7], we use Apyy = Agg = Acc =
25, AAB = 30, AAC = 0, ABC = 50, and rg = 0.5 which
gives phase diagram features lying in a convenient tem-
perature range around kg7 ~ 1 (we fix units by choosing
m = r. = 1, where m is the mass of the particles).

Figure 1 shows the phase diagram as a function of
dimer concentration and kg7, at an overall density p =
(2Nap + N¢)/V = 6, where dimer concentration is de-
fined to be the mole fraction of particles in dimers, ¢ =
2Nap/(2Nap + N¢). Similar to many real systems [8],
micellar (L), hexagonal (H;) and lamellar (L,) phases
are found in order of increasing dimer concentration. We
have also tuned the interactions so that on the pure dimer
side there is a reentrant isotropic fluid (L,) phase, since
this reflects the real behavior of many nonionic surfac-
tants and is crucial to the contact simulations below. We
did not find any cubic phases, although we note that these
are not always present in real systems [8,9] (an extensive
study of lattice models by Larson [10] suggests that cubic
phases could be engineered to appear, particularly if the
present model is elaborated beyond dimers). Also, we
caution that kg7 in the model is not easily mapped onto
a real temperature. Despite these deficiencies, it is never-
theless remarkable that such a simple model reproduces
the main features of the phase diagram common to a
large number of surfactants.

To simulate surfactant dissolution and mesophase for-
mation is now very simple. We take two simulation boxes,
one containing an equilibrated fluid of pure dimers and
the other containing equilibrated solvent particles. We
place them next to each other and allow the dimers and
solvent particles to interdiffuse. Just as in the real sys-
tems, mesophases start to appear at the interface over
time. Here we report results for the kg7 = 1 isotherm; the
kgT = 0.5 isotherm was also studied with similar results.
We consider simulation boxes of size 102 X 100, with the
concentration gradient along the long axis. Figure 1 shows
some representative simulation snapshots.

While this is straightforward, there are a couple of
technical points to be considered. First, it is important
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FIG. 1.

(a) Phase diagram for dimer/solvent model in (c, kgT) plane showing points where we find isotropic, hexagonal, and

lamellar phases (crosses, squares, and diamonds, respectively). The lines are a guide to the eye. (b)—(e) Isosurfaces (pc = 1.3) for
equilibrium phases along kg7 = 1 isotherm, at ¢ = 0.3, 0.6, 0.7, and 0.9, respectively. (f)—(h) Isosurfaces showing snapshots of
surfactant dissolution simulations, at elapsed times ¢ = 12, 120, and 1200 DPD time units from initial contact.

to adjust the densities in the two boxes so that the pres-
sures are equal. From separate simulations, we deter-
mined the equation of state for the pure components,
and found that densities p = 6.124 and 5.896 for the
solvent and dimers, respectively, give a common pressure
p = 100. These densities are within = 2% of the density
p = 6 used to construct the phase diagram of Fig. 1,
which obviates the need to consider constant pressure
simulations. The pressure matching is important though
because it suppresses sound waves which would spoil the
subsequent analysis. Second, if we were to use conven-
tional periodic boundary conditions, there would be an
unwanted second interface in the system. We eliminate
this by bounding the simulation box in the long direction
by hard reflecting walls, supplemented by short-range
soft repulsive potentials of the form U =%Awall(1 -
z/r.)? (z<r.), where z is the distance from the hard
wall. The soft repulsive force suppresses density oscilla-
tions which would otherwise arise due to the abrupt
termination of the particle density. We find empirically
Ayar = 25 gives a smoothly vanishing density. Periodic
boundary conditions are retained in the other two
directions.

Now we turn to an objective analysis of the simulations
to determine the growth laws. This is done by introducing
a local order parameter which can distinguish between
mesophases as a function of distance normal to the origi-
nal contact plane. We examined various possibilities, such
as the use of topological (Minkowski) functionals
[11,12], but an approach which works well in practice is
motivated by the pc = 1.3 isosurfaces shown in Fig. 1.
The different mesophases are clearly distinguishable to
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the eye because the isosurface is predominantly spherical,
cylindrical, planar, or fragmented, for the L, H;, L, and
L, phases, respectively [13]. This geometric insight can
be made quantitative by constructing the second moment
of the isosurface normal distribution p(n), namely, the
symmetric tensor M = [nn p(n)dn [14]. The local geo-
metric nature of the isosurface and, hence, the underlying
mesophase is reflected in the eigenvalues u; of M [15]. If
these eigenvalues are ranked in order of increasing size,
we determined after some trials that a slice can be clas-
sified as H; if u; <0.05 and w3 > 0.3, 0r L, if u; <
0.05 and g, <0.15 (note >3_, u; = 1).

For the present study, we divide the simulation box into
slices of thickness 0.25r,. parallel to the original contact
plane and determine the eigenvalues of M for each slice.
Figure 2(a) gives a representative example, showing that
the various mesophases can be clearly distinguished. The
transition between H; and L, is particularly sharp as can
also be seen in Fig. 1(h) [16]. The above criteria are used
to classify each slice and the positions of the boundaries
between mesophases determined as a function of time.
There is a short incubation period before the local order
parameter can distinguish the different mesophases, but,
beyond this point, the boundaries can be reliably tracked
as shown in Fig. 2(b). The key results are contained in
Figs. 2(c) and 2(d), which show, respectively, the local
composition at the mesophase boundary and the squared
width of the middle two mesophases as a function of
time.

Figure 2(c) shows that the local compositions be-
come established at constant values almost as soon as
mesophases can be distinguished. These values are
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(a) Concentration profile (upper curve) and eigenvalues of local order parameter tensor (lower curves) at ¢t = 1200 DPD

time units after initial contact. (b) Phase boundary positions as a function of time, as determined from the eigenvalue analysis. (c)
Local concentrations at phase boundaries, and (d) squared widths of middle mesophases, as functions of time.

c = 0.44(1), 0.61(1), and 0.84(1), for the L,-H,, H;-L,,
and L,-L, boundaries, respectively, (the number in
brackets is an estimate of the error in the final digit).
These should be compared to the equilibrium transition
concentrations ¢ = 0.435(5), 0.605(5), and 0.875(5) read
off Fig. 1(a). Thus, the L{-H; and H;-L, boundaries in the
kinetic simulation lie almost exactly at the point expected
from the equilibrium phase diagram. The L ,-L, bound-
ary is displaced from that found in the equilibrium phase
diagram, but it is clear from Fig. 2(a) that this boundary
is not completely sharp. Apart from this boundary there-
fore, it appears that the mesophases grow adiabatically
almost from the earliest moments that the local order
parameter can distinguish the growing mesophases.
Figure 2(d) shows that both mesophases follow a Az> =
B(t — ty) law, where Az is the mesophase width. This is a
classic test and suggests that the process of mesophase
growth is diffusion controlled from the earliest times for
which mesophases can be distinguished. The straight line
fits in Fig. 2(d) have slopes 8 = 1.07(1) and 3.23(2) for
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the H; and L, phases, respectively (z, = 50 for both). To
further examine this, we fit 8 to what would be expected
if the local composition followed a simple diffusion
law ¢ = (1 + erf(z//4D.st))/2, where D, is an effective
diffusion coefficient. This would predict =
4Dilerf1(2¢c; — 1) —erf ' (2¢; — 1)]>, where ¢, are
the fixed compositions at the edges of the mesophase of
interest. We find D¢ = 3.0(5) and 3.2(4) for the H, and
L, phases, respectively. These effective diffusion coeffi-
cients are, within statistical errors, the same in the two
phases. This is similar to previous experimental findings
[3]. Note though that the concentration profiles, such as
those shown in Fig. 2(a), do not fit the simple diffusion
law suggesting that D is not constant across all compo-
sitions and all phases.

For comparison, we also determined from separate
simulations the self-diffusion coefficients for the two
pure components. We find Dy = 0.219(3) for solvent
particles in pure solvent, and Dy = 0.092(2) for dimers
in a pure dimer fluid. The effective diffusion coefficients
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in the mesophases are considerably greater than these
which suggests the existence of a sizable free energy
driving force enhancing diffusion and is reminiscent of
a detailed study on the H; phase of the C;,Eq/water
system [17].

We can use D¢ to map elapsed times in our mesoscale
simulation onto real times. For example, for nonionic
surfactants, it was found experimentally D.; = 2 X
10719 m? 572 [3]. The lamellar repeat spacing L can be
used as a common measure of length: L = 2.5 DPD units
in the simulation, and L = 5 nm is typical for real sys-
tems. By using L?/D. to scale time, we conclude one
DPD time step is approximately equivalent to 50 ns. Thus,
the duration of the whole simulation (2000 DPD time
units) represents more than 0.1 ms of real time, equivalent
to 10" molecular dynamics time steps. Our results sug-
gest that adiabatic diffusion controlled dissolution sets in
after about 200 DPD time units, equivalent to about
10 ws, which is the origin of the time scale quoted in
the introduction.

Our simulations, while addressing very directly in-
triguing questions concerning surfactant dissolution, are
also interesting because they are simulations of phase
formation kinetics starting from a highly inhomogeneous
state [18,19], rather than the usual approach which is to
quench a homogeneous system [20]. It is indeed striking
that we do not find any evidence of metastability which
would delay the appearance of the mesophases (in con-
trast to what is sometimes found in temperature-jump
experiments [21]), nor do we find any systematic dis-
placement of the mesophase boundaries by the strong
concentration gradients present at such early times.
Furthermore, previous studies of front propagation in
unstable media might suggest that our mesophase
boundaries should propagate with some asymptotic con-
stant velocity [22,23], but all the evidence in Fig. 2 sug-
gests propagation is limited by the interdiffusion of the
two species in our model and not by phase formation
kinetics. For example, the motion of the L,-L, boundary
in Fig. 2(b) could be fitted to a constant-velocity growth
law at late times, but we do not find this convincing since
an equally good fit can be made to a diffusive growth law
over the whole time period.

Finally, our mesoscale model is also well suited to
other large-scale phenomenological studies of surfactant
(meso)phases, such as temperature quenches, the effect of
shear, more detailed exploration of epitaxial relation-
ships, among many other possibilities.
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