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Interplay between Nonlinearity, Scan Speed, Damping, and Electronics
in Frequency Modulation Atomic-Force Microscopy
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Numerical simulations of the frequency modulation atomic force microscope, including the whole
dynamical regulation by the electronics, show that the cantilever dynamics is conditionally stable and
that there is a direct link between the frequency shift and the conservative tip-sample interaction.
However, a soft coupling between the electronics and the nonlinearity of the interaction may
significantly affect the damping. A resonance between the scan speed and the response time of the
system can provide a simple explanation for the spatial shift and contrast inversion between topo-
graphical and damping images, and for the extreme sensitivity of the damping to a tip change.
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mation about the surface such as that related to the phonon � 0
The rapid advance in nanoscale physics has constantly
triggered innovative refinement of tools for detecting
novel atomic scale phenomena. Scanning tunneling mi-
croscopy (STM) [1] exploits the exponential distance
decay of the tip-sample tunneling current, and its confine-
ment to the foremost atoms of the tip can provide atomi-
cally resolved images of conducting surfaces. Atomic
force microscopy (AFM) [2] was devised to extend these
capabilities to more general surfaces but the tip-sample
contact area is often too large to permit atomic resolution.
To remedy the situation, the amplitude modulation (AM)
technique [3] (also known as tapping mode), where the
change in amplitude of a vibrating cantilever due to the
interaction is used for imaging the sample, has been
adapted for AFM. However, the nonlinearity of the tip-
sample force can lead to a complicated dynamical behav-
ior [4] because two stable oscillation states coexist in
many situations of interest.

Frequency modulation (FM) AFM [5] (also called
noncontact AFM) has achieved the long-standing goal
of true atomic resolution with AFM in UHV [6,7], as
well as the direct measurement of the covalent bonding
between the tip apex and sample atoms [8]. In FM-AFM,
the dynamical system is more complicated because the
oscillation amplitude of the cantilever is kept constant
and the separation is regulated by measuring the change
in the resonance frequency of the cantilever caused by the
interaction force. Because the cantilever motion is highly
sinusoidal, the measured frequency shift can be related to
the interaction using perturbation theory [9–11].

In FM-AFM, the amount of excitation necessary to
keep the oscillation amplitude constant (damping signal)
can also be used as an imaging signal [12–17], but its
magnitude and characteristics have been more difficult to
quantify and interpret than the frequency shift. In prin-
ciple, the damping signal could unleash important infor-
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local density of states in complete analogy with STM
[18,19], although preliminary studies indicate that its
magnitude is small compared to those reported in experi-
ments. A number of mechanisms such as adhesion hyste-
resis [10,20–22] or Joule dissipation have been proposed
to account for the large damping measured in experi-
ments but many qualitative effects remain outstanding.
For example, a small shift or even a contrast inversion is
often observed between topographical and damping im-
ages for constant frequency shift scan [14–17]. Based on
existing theoretical evidences, both adhesion hysteresis
[21] and stochastic dissipation [18] predict a (in phase)
normal contrast because the dissipation is caused by
interatomic interaction and is more sensitive to the sepa-
ration than the frequency shift signal itself. Joule dissi-
pation should be expected to be rather small on lossless
dielectric and metallic surfaces.

In this Letter, we stress the importance of identifying
effects that pertain to the operation of FM-AFM, and
consequently those which do not. This clearly requires a
nonperturbative approach to the dynamical problem in-
cluding the whole FM-AFM system; as we shall see,
many effects found here are beyond the reach of pertur-
bation theory [9,10,23]. To accomplish this, we perform
numerical simulations of FM-AFM which are depicted in
Fig. 1. The output of the detector, assumed to follow
infinitely closely the motion of the cantilever x�t�, is
sent to the amplitude regulator, FM demodulator, and
the multiplier.

The amplitude regulator contains two main compo-
nents. The first one, an analog rms-to-dc [24] (a
peak-to-peak detector can be used alternatively), mea-
sures the amplitude of the cantilever oscillation according
to the past motion of the cantilever,

Aav�t� �

��������������������������������������������������������������������
2Z t

x2�t0�e�t
0�t�=�dt0 � A02e��t=��

s
: (1)
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FIG. 1. The FM-AFM system. The cantilever motion x�t� is
first detected and then used to determine the gain G and, hence,
the excitation signal Aexc needed to keep the amplitude con-
stant, and the frequency shift �f that regulates the separation
L. The tip lateral position Y is regulated by the scan generator.
The system is assumed to be noiseless.
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The cantilever motion prior to the start of the numerical
integration t � 0 is assumed to be perfectly sinusoidal
with amplitude A0 � Aset, the set amplitude of oscillation.
The second module is a proportional integral (PI) con-
troller [25]. It takes as input the average amplitude Aav�t�
and produces the gain G needed for constant amplitude
operation:

G�t� � P�Aav�t� � Aset� � I
Z t

0
�Aav�t0� � Aset�dt0 �G0:

(2)
P and I are parameters set prior to the experiment, andG0

is the gain factor consistent with A0 prevailing before
t � 0.

The equation governing the analog phase shifter is

Aexc�t� � Am�t� �
2

�ps

Z t

0
Am�t

0� e�t
0�t�=�psdt0 � �A0

exc;

(3)

where Am�t� � G�t�x�t� is the output of the multiplier, and
�A0

exc 	 �Aexc�0� � Am�0�� e
��t=�ps�.

The FM demodulator is assumed to be a phase-locked
loop (PLL). A PLL has three main components: a phase
detector, a loop filter, and a voltage controlled oscillator
(VCO). The PLL locks theVCO signal onto the cantilever
motion so that the PLL output is essentially a dc signal
proportional to the frequency shift and is described by the
following two coupled nonlinear equations [26]:

u�t� � �
2K

�pllAset

Z t

0
dt0x�t0� sin���t0�� e�t

0�t�=�pll ; (4)

��t� �
Z t

0
�!0 � u�t0��dt0; (5)

with !0 the intrinsic resonance frequency of the cantile-
ver. u is the output of the (first-order) low-pass filter,
2K=Aset is the product of the gain constant of the phase
detector and VCO. The frequency shift is then given by
�f�t� � u�t�=2�.
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The separation regulator adjusts the tip-surface sepa-
ration L so as to ensure that the output of the FM
demodulator is kept close to the set frequency shift �fset:

L�t� �
1

�L

Z t

0
fPL��f�t

0� � �fset� � LOg e�t
0�t�=�Ldt0: (6)

The first-order low-pass filter mimics the response of the
piezo and PL is a quantity similar to P.

The equation of motion for the cantilever can thus be
written as

�xx �
!0

Q0
_xx �!2

0x �
!2

0

k
F�x� L�t�;Y�t�� �!2

0Aexc�t�;

(7)

Y�t� � ���t� tscan��t� tscan� � Y0 being the lateral po-
sition of the tip which is regulated by the scan generator
with ��t� the step function, and � the scan speed. k and
Q0 are the spring constant and intrinsic quality factor of
the cantilever, respectively. Aexc�t� and L�t� are given by
Eqs. (3) and (6), respectively. The numerical problem thus
amounts to solving a set of integrodifferential equations.
The constant step size fourth-order Runge-Kutta method
is used for the numerical integration. Self-consistency is
ensured at each substep for the PLL [Eqs. (4) and (5)]. In
absence of tip crash, 400 steps per cycle is sufficient for
proper integration.

Figure 2 shows the dynamics of the cantilever for a
typical setup configuration. Initially, the tip is oscillating
at a distance L � 135 �A and is then slowly brought to
L � 18:9 �A from the surface. During the approach, the
full electronics is on except for the separation regulator
[PL � 0 (open-loop), LO is externally controlled (adjust-
able offset)] and the scan generator (no scanning). After
the cantilever reaches some steady state, the separation
regulator is slowly turned on (closed loop) and a new
asymptotic behavior is established. The electronics
linearizes most of the cantilever dynamics. First, the
separation 2(a), frequency shift 2(b), and the average
amplitude 2(c) are all well regulated. The frequency shift
was confirmed to be insensitive to the details of the
electronics and follow very closely that predicted by
perturbation theory [9]. As shown in Fig. 2(d), the can-
tilever motion is very sinusoidal and its phase lag with
respect to the (normalized) excitation signal Aexc is 90�

(resonance). The small diminution (barely visible) of the
gain ( 
 0:013%) in Fig. 2(e) until t � 2 sec clearly in-
dicates that anharmonic terms are negligible.

The increase of the damping of Fig. 2(e) is unexpected
because the imprecision in the amplitude or phase [27]
are negligible and the quality factor Q0 is constant
throughout the simulation. The extra energy is dissipated
to the surface according to the perturbation formula G �
1
Q0

� !
k A�

R2�=!
0 F�x� L� sin�!t�dt [10]. Because L is no

longer exactly a constant, it provides a mechanism for
which the force felt during the approach and retraction is
different. When the separation regulator is fully operative
(closed loop), the separation signal can be written as
146104-2



FIG. 2. The cantilever dynamics upon approach (no scan-
ning). The separation (a) , frequency shift (b), oscillation am-
plitude (c), cantilever motion (d), and gain (damping) (e) are
shown. (1) and (2) in (a) indicate the time where the separation
regulator is turned on and reaches full operation, respectively.
The cantilever is characterized by !0 � 106sec�1, k� 26 N=m,
and Q0 � 24000. The interaction potential is a Rydberg func-
tion with b� 1:67 �A�1, R� 3 �A, and U� 4� 10�11 J. All
parameters describing the electronics are also given.
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FIG. 3 (color). Damping and topographical profiles of a
simple surface model with a step. Scanning is performed at
constant frequency shift �f � �32:39 Hz. The contrast is al-
most normal (��50:47 �A=sec) or inverted (��55:93 �A=sec)
depending on the scan speed. The scan speed affects signifi-
cantly the corrugation of the damping but not that of the se-
paration. The orders of magnitude of the corrugation amplitude
compare well with some experiments as discussed in the text.

VOLUME 89, NUMBER 14 P H Y S I C A L R E V I E W L E T T E R S 30 SEPTEMBER 2002
L�t� � LO � LC
1 �t� � LC

2 . LC
1 �t� depends on the properties

of the PLL and separation regulator [28] and LC
2 arises

due to the weak coupling between the electronics and the
tip-surface interaction and can be determined by solving
the following implicit equations:

�fC � �
f0

2kA�

Z 2�

0
F�x� L� cos�d�� �f�LDC�; (8)

LC
2 � PL�f

C: (9)

Equation (8) is the perturbation formula [9] and Eq. (9) is
obtained from Eq. (6). It can be seen that if the interaction
force F is linear then G! 1=Q0 and there is no coupling
among the electronic components, i.e., LC

2 � 0 and
�fC � 0. In other words, the nonlinearity of the inter-
action plays an essential role for this dissipation mecha-
nism to exist and could thus be made negligible by using
extremely small amplitude [22]. The amplitude of the
separation signal from t
 4 sec in Fig. 2(a) is about
0:03 �A (not visible on this scale). Note that the time scale
of this mechanism matches that of the cantilever motion
[28] and is thus effective at dissipating energy unless a
precision better than 
0:01 �A for the separation is
achieved.

Figure 3 shows topographical and damping profiles for
two scan speeds. The model for the surface contains 112
atoms with a step. Before the scan, the tip is approached
towards the surface as explained in Fig. 2. The scan speed
affects dramatically the magnitude of the damping cor-
rugation and its relative spatial phase. The contrast of the
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damping signal is almost normal (50:47 �A= sec) or in-
verted (55:93 �A= sec) depending on the scan speed. The
relative magnitude of the atomic corrugation of the
damping signal is about 
1% which is directly compa-
rable to some experiments where contrast inversion has
been observed; for example, Refs. [15] (5%), [14] (less
than 10%), and [16] ( 
 2%). In contrast, the topographi-
cal profile is insensitive to the scan speed (even when �

2500 �A=sec) and follows closely the periodicity of the
surface structure. For an ideal FM-AFM system, the
frequency shift and oscillation amplitude would be ex-
actly constant; here a corrugation smaller than 1 Hz and
0:1 �A is found, respectively.

The dependence of the damping signal corrugation and
spatial shift on the scan speed is plotted in Figs. 4(a) and
4(b), respectively. The corrugation for the interaction F
used in Figs. 2 and 3 (black line in Fig. 4) is clearly
peaked around the velocity 
53 �A= sec for which the
spatial shift is 2 �A (1/4 of the first layer spacing). When
a long-range component (van der Waals) is added to the
interaction (red), the corrugation increases but the spatial
146104-3
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FIG. 4 (color). Effect of the scan speed on the atomic scale
damping corrugation and spatial shift (�f � �32:39 Hz). Six
scenarios are shown: (i) F, (ii) F�HR=�6�x� s�2� with H �
0:12365� 10�19 J, R � 100 �A, and s � 4 �A, F with a viscous
dissipative process of the form  � const

P
�dF?

i =dx�
2 with

(iii) 5P, (iv) 10P, (v) 20P, and (vi) 5P and 3I. F, P, and I are
the interaction and the parameters of the PI controller, respec-
tively, described in Fig. 2. The resonance implies that real
dissipation to the surface is convoluted with the dynamical
response of FM-AFM. The extreme sensitivity of the damping
to a tip change could also be related to this resonance.
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shift remains unchanged. Applying a large bias voltage as
in Refs. [14,15] would therefore greatly enhance the
damping corrugation, but here this is not related to
Joule dissipation but to the change of the interaction
itself. A resonance occurs when the time taken by the
tip to cross two consecutive atoms in the uppermost
sample layer matches the (transient) response time of
the system. The latter was confirmed to depend on I
(strongly) and P (weakly) of the PI controller [Eq. (2)].
Figure 4 shows what happens when a viscous dissipation
process [18] exists for different values of I and P. In all
cases, the resonance persists, although the peak height,
position, and width are all related to the specific values of
I and P. For very slow scan, the contrast is normal and the
damping corrugation is independent of I and P. For faster
scan, however, real dissipation is convoluted with the
system operation; the change of the corrugation does
not result from a change in the dissipation but is related
to the way the amplitude is dynamically regulated. This
unequivocally demonstrates the existence of an apparent
dissipation mechanism in FM-AFM. It should be noted
that increasing P directly deteriorates the precision of the
damping signal, and the range of values of I for which the
system remains stable is relatively narrow.

This resonance can also provide a simple explanation
for the extreme sensitivity of the damping to a tip change
[16,17]. A tip change directly affects the force which
causes the damping corrugation to jump abruptly espe-
cially near the resonance.

A subtle remark about instabilities is now in order. In
Ref. [23], it was pointed out that perturbation theory
predicts the existence of asymptotically stable and
unstable solutions. Here we found that all solutions near
the resonance state are stable implying that the multi-
valuedness of the solutions is very unlikely to play any
role in FM-AFM as was previously suggested [29]. The
feedback thus plays an active role even when a steady
state has been reached. The stability is conditional, how-
146104-4
ever, because the system response time is finite. In con-
trast to AM-AFM, an instability can lead only to a tip
crash onto the surface. Abrupt changes in the interaction,
dissipation, or excitation signal were numerically con-
firmed to be possible causes.
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