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Orbital Angular Momentum Exchange in the Interaction of Twisted Light with Molecules
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In the interaction of molecules with light endowed with orbital angular momentum, an exchange of
orbital angular momentum in an electric dipole transition occurs only between the light and the center
of mass motion; i.e., internal ‘‘electronic-type’’ motion does not participate in any exchange of orbital
angular momentum in a dipole transition. A quadrupole transition is the lowest electric multipolar
process in which an exchange of orbital angular momentum can occur between the light, the internal
motion, and the center of mass motion. This rules out experiments seeking to observe exchange of
orbital angular momentum between light beams and the internal motion in electric dipole transitions.
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quency ! and orbital angular momentum l �h, with an where � � m1m2=M is the reduced mass and p is the
During the past decade or so, the orbital angular mo-
mentum (OAM) associated with certain types of laser
light has been the focus of much attention in both theo-
retical and experimental contexts. Interest evolved from
work by Allen et al. [1], who showed that Laguerre-
Gaussian light carries OAM in discrete units of �h asso-
ciated with the azimuthal phase dependence of the field
distribution. Since then, a number of experiments have
demonstrated the influence which the OAM of light im-
parts on polarizable matter, leading to novel features,
such as the optical spanner effect [2–4]. The manifesta-
tion of OAM in interactions of Laguerre-Gaussian light
with atoms has been explored theoretically, leading to
predictions of a light-induced torque which can be used to
control the rotational motion of atoms and ions [5]. Berry
[6] showed theoretically that the OAM is an intrinsic
property of all types of azimuthal phase-bearing light,
independent of the choice of axis about which it is de-
fined. A review of the work carried out until 1999 is given
in Ref. [7].

More recently, O’Neil et al. [8] investigated the classi-
fication of OAM in terms of intrinsic and extrinsic types
in the context of Laguerre-Gaussian light, and
Muthukrishnan and Stroud [9] explored the entanglement
of internal and external angular momenta in a single
atom. There is also a very recent report on the measure-
ment of optical OAM [10]. It can be argued that, if orbital
angular momentum is indeed an intrinsic property of
light, then in its interaction with a bound system of
charges such as an atom or a molecule, an exchange
should arise between light and matter, especially in a
transition between the energy levels, just as the photon
spin angular momentum manifests itself in the interac-
tion of circularly polarized light in a radiative transition.
The purpose of this article is to explore the validity of
this argument using a prototypical model of a molecule
interacting with a simple form of light carrying OAM.

We focus on an electromagnetic light mode of fre-
0031-9007=02=89(14)=143601(4)$20.00 
electric field vector distribution expressible in cylindrical
polar coordinates r � �rk; z� � �rk; �0; z� as follows [11]:

Ekl�r; t� � �̂�F�rk�ei�kz�!t�eil�
0
; (1)

where �̂� is a wave polarization vector and F�rk� is a scalar
distribution function depending only on the radial coor-
dinate. For the molecule we consider a bound system of
charges in simplest form, namely, a hydrogenic two-
particle system consisting of a spinless electron (referred
to as e� ) of mass m1 and charge �e and a spinless
nucleus (referred to as e� ) of mass m2 and charge �e,
with e the magnitude of electron charge. It is straightfor-
ward to derive the Power-Zienau-Woolley (PZW)
Hamiltonian of this system in interaction with the light
field [12,13], expressible as a sum of four parts:

H � H0
M �H0

� �H0
fields �Hint: (2)

H0
M � P2=2M is the center of mass Hamiltonian, which

is essentially its kinetic energy operator, with P the center
of mass momentum andM � m1 �m2 its total mass. The
center of mass momentum is conjugate to the center of
mass coordinate R, defined in terms of the particle posi-
tion vectors qi; i � 1; 2, by R � �m1q1 �m2q2�=M.
Figure 1 schematically shows the position vectors q1

and q2 and that of the center of mass R. We are, however,
interested in the possibility of the center of mass rotating
about a beam axis in which case we should write

H0
M �

L2
z

2I
�
P2
z

2M
; (3)

where Lz is the angular momentum operator, I is the
moment of inertia of the atomic center of mass about
the z axis, and Pz is the center of mass momentum axial
vector component. The second term in Eq. (2) pertains to
the internal ‘‘electronic-type’’ motion,

H0
� �

p2

2�
�

e2

4��0q
; (4)
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FIG. 1. The particle position vectors and that of the center of
mass for the two-particle model of the molecule. The projec-
tions of these vectors in the x-y plane are also shown.
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momentum conjugate to the internal coordinate q � q1 �
q2. The second term in Eq. (4) is the Coulomb potential
binding the two-particle system, with q � jqj. The third
term in the total Hamiltonian is defined by

Hfield � �h!ayklakl; (5)

which is the field Hamiltonian in quantized form with akl
the annihilation operator of the light mode of frequency
!, orbital angular momentum l �h, and axial wave vector
k � kẑz. The validity of such quantization for beams with
OAM has recently been vindicated in work by Dávila
Romero et al. [11]. Finally, the last term in (2) is the
Hamiltonian describing the coupling between the light
and matter. In the PZW scheme, this can be written as
[12,13]

Hint � �
Z
d3r P �r� � ~EEkl�r; t�; (6)
143601-2
where ~EEkl�r; t� is the second quantized form of the elec-
tric field in Eq. (1); P �r� is the electric polarization
defined in closed integral form by

P �r� �
X
��1;2

e�
Z 1

0
d��q� �R���r�R� ��q� �R�
:

(7)

For simplicity, we have ignored all magnetic interactions.
Note that, although the electric polarization field defined
in Eq. (7) appears to be a function of q1 and q2, it can be
written entirely in terms of the relative coordinate q using

q1;2 �R � �m2;1q=M: (8)

We start by specifying zero-order states of the overall
motion, comprising the center of mass motion (rotational
and translational), the internal ‘‘electronic-type’’ motion,
and the field state. The appropriate states are product
states of the three-subsystem Hamiltonian H0 � H0

M �
H0
� �H0

field expressible as jPz; Lz; j; fNklgi. The unper-
turbed center of mass motion in this state is represented
by an axial translational state with linear momentum Pz,
together with a rotational eigenstate of the angular mo-
mentum operator Lz with eigenvalues �hLz. The internal
motion enters in terms of the hydrogenic excited discrete
states jji � jei of energy Ee and a ground state jji � jgi
of energy Eg. The notation jei and jgi stand for jne; le;mei
and jng; lg;mgi, respectively, where nj; lj; mj with j �
e; g are hydrogenic state quantum numbers. Finally, the
ketjfNklgi is the number state of the light field.

The coupling between matter and field invokes
the interaction matrix element Mif, where jii �
jPz; Lz; e; fNklgi and jfi � jP0

z; L
0
z; g; fN

0
klgi. Specifically,

Mif � �hPz; Lz; e; fNklgj
Z
d3rP �r�

� ~EEkl�r; t�jP0
z; L0

z; g; fN0
klgi: (9)

To proceed, we express Eq. (6) as follows:
Hint � e
Z
d3r

Z 1

0
d�

�
m2

M
q�

�
r�R� �

m2

M
q
�
�
m1

M
q�

�
r�R� �

m1

M
q
��
�~EEkl�r; t�

�
e
M

q �
Z 1

0
d�fm2

~EEkl�R� �m2q=M; t� �m1
~EEkl�R� �m1q=M; t�g � H�1�

int �H�2�
int ; (10)
where we have used Eqs. (7) and (8) and the electric field
is that given by Eq. (1), evaluated at r � R� �m2q=M in
H�1�

int and at r � R� �m1q=M in H�2�
int . The most useful

form of the interaction Hamiltonian in Eq. (10) is a
multipolar. It should, however, be emphasized that, while
we can treat the magnitude of the internal coordinate as
small relative to a wavelength, we cannot say that the
internal azimuthal angle is small, or set it equal to that of
the center of mass. We need to incorporate the full azimu-
thal angular dependence which must be split into internal
and center of mass dependences. To establish the azimu-
thal angular dependence, we consider projections of rele-
vant vectors in the x-y plane. Figure 2 shows the vectors
Rk, �m2qk=M and their sum Rk � �m2qk=M in the con-
text of H�1�

int . A similar figure can be constructed for the
143601-2
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vectors Rk; ��m1qk=M and their sum Rk � �m1qk=M in
the context of H�2�

int .
Concentrating on H�1�

int first, the azimuthal angles asso-
ciated with the relevant vector projections as shown in
Fig. 2 are as follows: � is the azimuthal angle of the
vector Rk � �m2qk=M, while �R is that for the center of
mass coordinate Rk and � is the internal azimuthal
angle, which is also the azimuthal angle of the vector
�m2qk=M. The sine rule immediately gives
143601-3
M sin����R�

m2�qk
�

sin�����

Rk

; (11)

which, after expanding the sines, yields

tan��� �
�m2qk sin��� �MRk sin��R�

�m2qk cos��� �MRk cos��R�
: (12)

Substituting for ~EEkl and making use of Eq. (1), we have
H�1�
int �

em2

M
�̂� � q

Z 1

0
d�F�jRk � �m2qk=Mj�eik�Rz��m2qz=M�eil�e�i!takl � H:c:; (13)

where H.c. is the Hermitian conjugate. The azimuthal exponential factor in Eq. (13) is

eil� �

0
@ ��m2qk cos��� �MRk cos��R�
 � i��m2qk sin��� �MRk sin��R�
																																																																																																																																													

��m2qk cos��� �MRk cos��R�

2 � ��m2qk sin��� �MRk sin��R�


2
q

1
Al: (14)

This can be simplified to give

eil� �

0
@� �m2qkei� �MRkei�R																																																																																																			

��m2qk
2 �M2R2
k
� 2m2M�qkRk cos����R�

q
1
Al: (15)

We now make use of the ‘‘multipolar’’ approximation,

�m2qk=M� Rk; �m2qz=M� Rz: (16)

These facilitate the next steps starting from Eq. (13) involving the expansion around Rk of the function F�jRk �
�m2qk=Mj�, together with the expansion of the exponential term containing z components around Rz. A similar
treatment is needed to expand the azimuthal factor in Eq. (15). These steps are followed by integration over �. We obtain
from Eq. (13) using q̂q�kR̂Rk � cos����R�, where carets denote unit vectors,

H�1�
int �

em2

M
�̂� � qeikRz



1� i

m2kqz
2M

�
e�i!takl�

�
F�Rk�eil�R �

qkm2

M

�
G�
l �Rk�ei�l�1��Rei��G�

l �Rk�ei�l�1��Re�i�
��
�H:c:;

(17)
the functions G�

l �Rk� arising from differentiating F�Rk� with respect to Rk, and expanding eil�,

G�
l �Rk� �

1

4



dF
dRk

�
lF
Rk

�
: (18)

Following similar steps, we can reduce the expression for H�2�
int to the analogue of Eq. (17):

H�2�
int �

em1

M
�̂� � qeikRz



1� i

m1kqz
2M

�
e�i!takl�

�
F�Rk�eil�R �

qkm1

M
�G�

l �Rk�ei�l�1��Rei��G�
l �Rk�ei�l�1��Re�i�


�
�H:c:

(19)
The total interaction Hamiltonian is the sum of the ex-
pressions in Eqs. (17) and (19). The interaction
Hamiltonian in the electric dipole approximation
emerges from the sum of the terms linear in the vector
components of the internal coordinate q. We have

Hint�dipole� � e�̂� � qeikRzF�Rk�e
il�Re�i!takl � H:c:;

(20)

and we see that, besides the internal operator e�̂� � q, the
dipole approximation involves only the center of mass
cylindrical coordinates �Rk;�R; Rz�. Substitution of this
in Eq. (9), writing the explicit forms of the translational
and rotational eigenstates of the center of mass motion,
and performing the space integrals, we obtain

Mif � �2��2hej�̂� � djgiN1=2
kl e

�i!t��Lz�L0
z�;l

� ��Pz � P0
z � �hk�M;k (21)

where d � eq is the electric dipole moment vector and
Mk is the integral Mk �

R
1
0 dRkRkF�Rk�. The Dirac

delta function in Eq. (21) exhibits conservation of the
center of mass axial linear momentum with conventional
linear momentum transfer between the light and the
center of mass. The Kronecker delta expresses conserva-
tion of orbital angular momentum; there is clearly OAM
transfer of magnitude l �h between the light and the
center of mass rotational motion. In this electric dipole
143601-3
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FIG. 2. The vector projections in the x-y plane and the
corresponding azimuthal angles for the vectors Rk,
�m2qk=M and their sum Rk � �m2qk=M in the context ofH�1�

int .
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approximation, the internal motion does not participate in
any exchange of momentum with the light beam, neither
linear momentum nor orbital angular momentum.

Consider next terms quadratic in vector components of
q . These correspond to quadrupole interaction and are
classifiable into three kinds. The first is of the form

H�1�
int �qq� � ��̂� � qqzeil�RF�Rk�e

ikRze�i!takl � H:c:;

(22)

where � is a constant. The second type is of the form

H�2�
int �qq� � )�̂� � qqkei�ei�l�1��RG�

l �Rk�e
ikRze�i!takl

� H:c:;

(23)
where ) is a constant. The third is of the form

H�3�
int �qq� � )�̂� � qqke�i�ei�l�1��RG�

l �Rk�eikRze�i!takl
� H:c:

(24)

It is easy to show that once H�1�
int �qq�, Eq. (22) is inserted

in the matrix element in Eq. (9), this term cannot mediate
any transfer of OAM between the light and the internal
motion. However, transfer of OAM does occur between
the light and the center of mass motion, as in the electric
dipole case. By contrast, we see in the expression for
H�2�

int �qq� in Eq. (23) that a factor ei� now appears in the
matrix element between internal states jei and jgi, and the
center of mass azimuthal phase factor is now ei�l�1��R .
This is indicative of transfer of OAM from the light beam
to the internal motion, leaving only �l� 1� �h which are
transferred to the center of mass rotation. Similarly when
H�3�

int �qq�, Eq. (24), is substituted in the matrix element,
143601-4
we conclude that a transfer of OAM occurs between the
internal motion and the light beam, enhancing the beam
by one unit to �l� 1� �h which is transferred to the center
of mass rotation. It is easy to check that the integrals over
the internal azimuthal angle � lead to the usual quadu-
pole selection rule jme �mgj � 0;�1;�2, where me and
mg are the azimuthal quantum numbers of the respective
internal states jei and jgi involved in the transition.

In conclusion, we have demonstrated by explicit analy-
sis that, in the interaction of light possessing orbital
angular momentum with atoms or molecules, the major
mechanism of exchange occurs in the electric dipole
approximation and involves only the center of mass mo-
tion and the light beam. The internal ‘‘electronic-type’’
motion does not participate in any OAM exchange with
the light beam to this leading order. It is only in the
weaker electric quadrupole interaction that an exchange
involving all three subsystems (the light, the atomic
center of mass, and the internal motion) can take place.
This involves one unit of OAM exchanged between the
light beam and the internal motion resulting in the light
beam possessing �l� 1� �h, which are then transferred to
the center of mass motion. These conclusions rule out any
experiments which seek to observe orbital angular mo-
mentum exchange involving light beams and the internal
states of molecular systems via electric dipole transitions.
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