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Self-Energy Correction to the Bound-Electron g Factor in H-like Ions
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The one-loop self-energy correction to the 1s-electron g factor is evaluated to all orders in Z� with an
accuracy essentially better than that of previous calculations of this correction. As a result, the
uncertainty of the theoretical prediction for the bound-electron g factor in H-like carbon is reduced
by a factor of 3. This improves the total accuracy of the recent electron-mass determination [T. Beier
et al., Phys. Rev. Lett. 88, 011603 (2002)]. The new value of the electron mass is found to be me �
0:000 548 579 909 3 �3� u.
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effects. Unlike the hyperfine splitting, where a large found analytically by employing the generalized virial
Spectacular progress in high-precision measurements
of the bound-electron g factor for the H-like carbon [1]
and the related theoretical investigations recently pro-
vided a new independent determination of the electron
mass [2]. It yields me � 0:000 548 579 909 2 �4� u. This
result agrees with the 1998 CODATA value [3] within
1.5 standard deviations but is 3 times more precise. The
uncertainty of the electron-mass value of [2] originates
equally from the theoretical result for the bound-electron
g factor and from the experimental value for the ratio of
the electronic Larmor precession frequency and the cy-
clotron frequency of the ion in the trap. Therefore, any
advance in theoretical or experimental investigations will
improve the accuracy of the electron-mass value.
However, for significant progress one needs to reduce
both the theoretical and experimental uncertainties.
From the experimental side, an increase of the accuracy
by an order of magnitude is anticipated in the near future,
as well as an extension of the measurements to higher-Z
systems [4]. Investigations of the bound-electron g factor
in high-Z systems are of particular importance since they
can provide a new determination of the fine-structure
constant [4,5] and nuclear magnetic moments [4]. They
would also create a good possibility for testing the mag-
netic sector of QED in a strong Coulomb field.

From the theoretical point of view, the leading error of
the bound-electron g-factor value for H-like carbon
comes from the one-loop self-energy correction.
Reducing this uncertainty is the aim of the present in-
vestigation. The second major error is due to the two-loop
binding QED correction that is known at present only to
the lowest order in Z� [5–7]. To reduce that uncertainty is
a serious problem. However, recent progress in calcula-
tions of two-loop QED corrections to the Lamb shift,
both within the Z� expansion [8,9] and to all orders in Z�
[10], allows us to hope that its solution might be possible
in the near future. An important feature of studying the
bound-electron g factor is a relative weakness of nuclear
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effect of distribution of the magnetic moment over the
nucleus complicates the identification of one-loop QED
effects, for the bound-electron g factor, the uncertainty
due to nuclear effects is smaller than two-loop binding
QED corrections for almost all ions, except for very high
values of Z. In addition, as shown in [11], the finite-
nuclear-size effect can be largely canceled in a specific
difference of the bound-electron g factors for H- and Li-
like ions. Therefore, this difference can be (in principle)
calculated up to a very high accuracy. This fact makes the
bound-electron g factor very promising for testing two-
loop QED effects by comparing theory and experiment.

The one-loop self-energy correction to the 1s g factor
was first evaluated by Blundell et al. [12] and by Persson
et al. [13]. The latter work was extended by Beier and co-
workers [14], whose result was used in the electron-mass
determination [2]. Formal expressions for the one-loop
self-energy correction to the bound-state g factor can be
conveniently derived by perturbing the first-order self-
energy with the magnetic potential. Perturbations of the
initial wave function, the binding energy, and the electron
propagator give rise to the irreducible (�gir), the reducible
(�gred), and the vertex (�gver) contributions, respectively
(see, e.g., [14] for the details). In order to avoid large
numerical cancellations, it is convenient to calculate the
vertex and the reducible part together. We indicate the
sum of these two contributions with the subscript ‘‘vr,’’
�gvr � �gver � �gred.

Now we turn to the numerical evaluation of these
contributions. We perform our calculations in the
Feynman gauge and for both the point and the extended
nucleus. In the latter case, the hollow-shell nuclear model
was utilized. Since calculations for the point nucleus are
easier from the technical point of view and because of
smallness of the finite-nuclear-size effect, we later dis-
cuss mainly the point-nucleus evaluation. The calculation
of the irreducible part is quite straightforward. For the
point nucleus, the perturbed wave function j�ai can be
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relations for the Dirac equation [15]. The corresponding
explicit expressions can be found in [16]. The numerical
evaluation of the nondiagonal matrix element of the self-
energy operator was carried out similarly to that for the
self-energy correction to the hyperfine structure [17],
within the Green-function technique. As an additional
cross-check of this part of our calculation, we evaluated
the irreducible part also by a completely independent
numerical method described in [18].

The numerical evaluation of the vertex and reducible
parts is more problematic. The standard way to treat
corrections of this kind is to separate terms in which
bound-electron propagators are replaced with free propa-
gators.We refer to this part as the 0-potential contribution
�g�0�vr . This term contains ultraviolet divergences that can
be covariantly separated and canceled in momentum
space. The remainder �g�1��

vr is ultraviolet finite and can
be calculated directly in coordinate space, as in [12].
However, it turns out that the corresponding partial-
wave expansion converges slowly in the low-Z region,
and the error due to the truncation of the series is dom-
inating. For gaining better control over the partial-wave
summation, in [13,14] it was proposed to separate from
�g�1��

vr a part containing (besides an interaction with the
magnetic field) one Coulomb interaction with the nucleus
in electron propagators, the so-called 1-potential contri-
bution �g�1�vr . The authors demonstrated that the partial-
wave expansion of the remainder (the many-potential
contribution �g�2��

vr ) converges much faster than that
for �g�1��

vr . For the evaluation of the 1-potential term,
a separate numerical scheme was developed in [13,14],
based on an analytical treatment of radial integrals. This
allowed the authors to extend the partial-wave summa-
tion up to lmax � 120. However, the unevaluated tail of the
expansion still yields a significant contribution in that
TABLE I. Various contributions to the one-loop self-energy corre
absolute contributions to the g factor (1=� � 137:035 989 5) and
nuclear model are indicated with labels ‘‘pnt.’’ and ‘‘ext.,’’ respect
free-electron value �= from the total self-energy correction �g
indicated.

Z �gir �g�0�vr �g�1�vr �g�2��
vr

(pnt.) (pnt.) (pnt.) (pnt.)

1 1.52928 2320.77563 0.50250 0.03305 232
2 5.20640 2316.00970 1.55757 0.13053 232
3 10.52313 2309.28506 2.91759 0.28869 232
4 17.21613 2300.99753 4.45945 0.50260 232
5 25.10744 2291.41521 6.10392 0.76661 232
6 34.06467 2280.73799 7.79535 1.07460 232
8 54.78171 2256.69788 11.16571 1.79701 232

10 78.74380 2229.82629 14.34905 2.61754 232
12 105.51169 2200.79829 17.21623 3.48376 232
15 150.23524 2154.28732 20.77184 4.75746 233
18 199.76448 2105.29703 23.34254 5.85654 233
20 235.17645 2071.71454 24.49971 6.41815 233
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case. In order to get the accuracy, ascribed to the
1-potential term in [14] for carbon, one should estimate
the tail of the series with an uncertainty of about 1%.
This is a potentially dangerous point of this numerical
evaluation.

The central point of the present calculation is a differ-
ent treatment of the 1-potential term. We evaluate it
directly in momentum space without utilizing the par-
tial-wave expansion and, in this way, eliminate the un-
certainty due to the estimation of the tail of the series.
The next difference from the calculations [13,14] consists
in the treatment of the magnetic interaction in momentum
space. The Fourier transform of the classical magnetic
potential involves the gradient of a � function,

Acl�q� � �
i
2
�2�3�H 	 rq�3�q�
: (1)

In [13,14], the � function was replaced by a continuous
Gaussian function with a small but finite regulator. In our
evaluation of the 0- and 1-potential terms, we employ
directly (1) and evaluate the corresponding corrections
after integration by parts. (For the 0-potential term, the
same approach was utilized earlier in [12].) In case of the
0-potential term, this treatment requires additional ana-
lytical work, but finally, instead of a five-dimensional
numerical integration (as in [13,14]), we end up with a
single integral that can be evaluated up to an arbitrary
precision. The analytical part of the evaluation of the 1-
potential term is quite tedious, but the overall � function
simplifies the calculation greatly. Finally, the 1-potential
term is represented by a four-dimensional integral, whose
numerical evaluation is relatively easy.

The calculation of the many-potential term was
carried out in a manner similar to that in [17]. The
many-potential part was represented by a point-by-point
ction to the 1s electron g factor for H-like ions. All values are
presented in units of 10�6 (ppm). The point and the extended
ively. The binding correction is obtained by subtraction of the
SE. Only the total numerical error of the present evaluation is

�gSE Binding Binding Ref. [14]
(pnt.) (pnt.) (ext.) (ext.)

2.84046(10) 0.02083(10) 0.0208(9)
2.90420(9) 0.08457(9) 0.0844(9)
3.01447(9) 0.19484(9) 0.1944(9)
3.17571(9) 0.35608(9) 0.3555(9)
3.39318(9) 0.57355(9) 0.5732(9)
3.67261(9) 0.85298(9) 0.8528(9)
4.44231(9) 1.62268(9) 1.62267(9) 1.6225(10)
5.53668(10) 2.71705(10) 2.71702(10) 2.7159(10)
7.00997(12) 4.19034(12) 4.19029(12) 4.1907(12)
0.05186(16) 7.23223(16) 7.23211(16) 7.231(1)
4.26059(20) 11.44096(20) 11.44067(20) 11.442(2)
7.80885(24) 14.98922(24) 14.98869(24) 15.04(1)
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TABLE II. Various contributions to the one-loop self-energy correction to the 1s electron g factor for H-like carbon and oxygen
in the present evaluation (point-nucleus) and by Beier et al. [14] (extended nucleus). Units are ppm. Because of the smallness of the
finite-nuclear-size effect, it does not influence the term-by-term comparison.

�gir �g�0�vr �g�1�vr �g�2��
vr �gSE

Z � 6, this work 34.06467 2280.73799 7.79535(2) 1.07460(9) 2323.67261(9)
Z � 6, [14] 34.0647(4) 2280.7380(3) 7.7945(1) 1.0752(1) 2323.6724(9)

Z � 8, this work 54.78171 2256.69788 11.16571(2) 1.79701(9) 2324.44231(9)
Z � 8, [14] 54.7815(4) 2256.6979(3) 11.1646(2) 1.7981(1) 2324.4421(10)
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difference of the unrenormalized, the 0-potential, and the
1-potential terms. In addition, we also subtract the infra-
red-divergent contribution of the reference state from the
vertex and reducible parts. This contribution was then
evaluated separately, carrying out the ! integration an-
alytically and explicitly canceling divergences in the sum
of the reducible and the vertex part. Care should be taken
in the evaluation of the many-potential correction, since a
large numerical cancellation occurs in the point-by-point
difference. In order to avoid the appearance of pole terms
that lead to additional numerical cancellations, we em-
ploy the following contour of the ! integration: �"0 �
i1; "0 � i0
 � �"0 � i0;�i0
 � �i0; "0 � i0
 � �"0 �
i0; "0 � i1�, rather than simply the integration over the
imaginary axis. The parameter "0 in the definition of the
contour can be varied. In actual calculations its value was
taken to be about Z�"a for low Z. The summation over
partial waves was carried out up to j�max j � 20–35, and
the tail of the series was estimated by polynomial fitting.

The results of our numerical evaluation are presented
in Table I. In order to isolate the one-loop binding self-
energy correction, we subtract from the total self-energy
correction the free-electron value �= [19]. The resulting
binding correction is compared with the data from [14].
For all cases except for Z � 20, the results agree with
each other within the given error bars. A more detailed
comparison is presented in Table II for two most impor-
tant cases, carbon and oxygen. A certain deviation can be
observed for the 1-potential and many-potential contri-
butions, which is largely canceled in the sum. We do not
have any explanation of this fact at present. As an addi-
tional check of our calculation, we fitted our data for the
TABLE III. Individual contributions to the 1s-e
The labels SE and VP stand for self-energy and

12C5�

Dirac value (point) 1.998 721 3
Fin. nucl. size 0.000 000
Free QED, ��=� 0.002 322
Bind. SE, ��=� 0.000 000
Bind. VP, ��=� �0:000 000
QED, ��=�2 �0:000 003
Recoil 0.000 000
Total 2.001041 5
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binding correction and compared the result for the lead-
ing �Z��2 term with the analytical value [7] a20 � 1=6 �
0:1666 . . . . Our fitting yields a20 � 0:1667�2�. Finally, we
separate the higher-order contribution Fh:o:�Z�� that in-
corporates terms of order �Z��4 and higher,

�gSE �
�


�
1�

1

6
�Z��2 � �Z��4Fh:o:�Z��

�
: (2)

The results for the higher-order contribution are repre-
sented in Fig. 1, together with those from [14]. A least-
squares fit of our data to the form

Fh:o:�Z�� � a41 ln�Z�� � a40 � �Z���� � �
 (3)

yields a41 � �7:0�8� and a40 � �10�2�.
In Table III we present individual contributions to the

1s electron g factor for two most important cases, H-like
carbon and oxygen. The Dirac point-nucleus value and the
free parts of the QED correction are evaluated utilizing
the recommended value for the fine-structure constant
from [3], � � 1=137:035 999 76�50�. The calculation of
the binding self-energy correction was carried out with
the older value of the fine-structure constant specified in
Table I. This does not affect the numerical values at the
present level of accuracy. The finite-nuclear-size correc-
tion is simple and was evaluated numerically in [14] and
analytically in [20].

The vacuum-polarization correction consists of two
parts that can be thought to originate from the first-order
vacuum-polarization diagram with the magnetic interac-
tion inserted into the electron line (the electric-loop
contribution), and into the vacuum-polarization loop
(the magnetic-loop contribution). The first one was calcu-
lectron g factor in H-like carbon and oxygen.
vacuum-polarization.

16O7�

54 4 1.997 726 0031
000 4 0.000 000 0016
819 5 0.002 322 819 5
853 0(1) 0.000 001622 7(1)
008 5 �0:000 000 026 5
516 2�3� �0:000 003 517 1�6�
0876 0.000 000117 0
901(3) 2.000 047 020 2(6)
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FIG. 1. The higher-order contribution to the 1s electron g
factor for H-like ions Fh:o:�Z�, defined by (2). The squares
indicate our numerical values, and the circles stand for the
results of Beier et al [14].
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lated numerically in [13,14] and analytically (in the
Uehling approximation) in [21]. For completeness, we
reevaluated this correction and found it to agree with
the previous results. The remaining magnetic-loop con-
tribution is known to vanish in the Uehling approxima-
tion, and its contribution is very small in the low-Z
region. The direct numerical calculation in [14] yields
only its upper bound for Z < 10. In this work, we obtain
the numerical values for carbon and oxygen by fitting the
results of [14] for higher values of Z. A least-squares fit
yields the contributions of 1:4�2� 	 10�11 and 7:4�9� 	
10�11 to the g factor for carbon and oxygen, respectively.

The �2 QED correction includes the existing Z� ex-
pansion terms for the QED correction of second order in
� [5,6] and the known free-QED terms of higher orders in
� (see, e.g., [14]). Its relative uncertainty was estimated as
the ratio of the part of the one-loop QED correction that
is beyond the �Z��2 approximation, to the part that is
within the �Z��2 approximation, multiplied by a factor of
1.5. The recoil correction incorporates the total recoil
contribution of first order in m=M, calculated to all orders
in Z� in [22], and the known corrections of orders
�m=M�2 and ��m=M� [23].

In summary, our evaluation of the one-loop self-energy
correction for the 1s electron g factor in H-like ions
improves the accuracy of the theoretical prediction for
carbon by a factor of 3 and for oxygen by a factor of 2.
This reduces the total uncertainty of the electron-mass
determination of [2]. The new value for the electron mass
is found to be

me � 0:000 548 579 909 29 �29��8� ; (4)
where the first uncertainty originates from the experi-
mental value for the ratio of the electronic Larmor pre-
cession frequency and the cyclotron frequency of the ion
in the trap, and the second error comes from the theoreti-
cal value for the bound-electron g factor.
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