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New Proposal for Numerical Simulations of �-Vacuum-like Systems
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We propose a new approach to perform numerical simulations of �-vacuum-like systems, test it in two
analytically solvable models, and apply it to CP3. The main new ingredient in our approach is the
method used to compute the probability distribution function of the topological charge at � � 0. We do
not get unphysical phase transitions (flattening behavior of the free energy density) and reproduce the
exact analytical results for the order parameter in the whole � range within a few percent.
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following two technical reasons, which will be clarified n
Quantum field theories with a topological term in the
action have been a subject of interest in high energy
particle physics and in solid state physics for a long
time. In particle physics, these models describe particle
interactions with a CP violating term. The extremely
small experimental bound for the CP violating effects
in QCD (strong CP problem) is still waiting for a con-
vincing theoretical explanation [1]. In solid state physics,
chains of half-integer quantum spins with antiferromag-
netic interactions are related to the two-dimensional O�3�
nonlinear sigma model with a topological term at � � �.
It has been argued that this model presents a second order
phase transition at � � �, keeping its ground state CP
symmetric (Haldane conjecture) [2].

Nonperturbative studies of field theories with a
�-vacuum term are enormously delayed because of the
complex character of the Euclidean action which forbids
the application of all standard Monte Carlo algorithms.
Besides this, lattice QCD lacks from a simple consistent
definition of topological charge.

The partition function ZV��� of any �-vacuum-like
model in a finite space-time lattice volume V can be
written, up to a normalization constant, as the discrete
Fourier transform of the probability distribution function
(PDF) of the topological charge at � � 0:

ZV��� �
X

n

pV�n�ei�n; (1)

where pV�n� is the probability of the topological sector n
and the sum runs over all integers n. In almost all
practical cases the sum in (1) has a number of terms of
order V since the maximum value of the topological
charge at finite volume is of this order.

Since efficient algorithms for numerical simulations of
physical systems with complex actions are not yet avail-
able, the only a priori reliable numerical scheme to
analyze the thermodynamics of �-vacuum-like models
goes through the determination of the PDF of the topo-
logical charge, pV�n�, and the evaluation of its Fourier
transform (1). But this is a difficult task due to the
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later: (i) any numerical determination of pV�n� suffers
from statistical fluctuations [3], and small errors in pV�n�
can induce enormous relative errors in the determination
of a quantity as ZV��� which is an extremely small
number of order e�V , (ii) even if we were able to evaluate
pV(n) with infinite precision, the sum in (1) contains
terms that differ by many orders of magnitude, running
from 1 to e�V [4].

In a few specific cases one can overcome the sign
problem [5]. However, previous attempts by other groups
to simulate �-vacuum-like systems [3,6] were based on
the numerical determination of the PDF of the topologi-
cal charge straightforwardly, by standard simulations, or
by more sophisticated methods based on the use of multi-
binning and reweighting techniques. In all these at-
tempts, artificial phase transitions at a �c decreasing
with the lattice volume were observed for the two-dimen-
sional U(1) gauge theory at strong coupling as well as
CPN models. The origin of this artificial behavior, which
follows from a flattening behavior of the free energy for �
values larger than a certain �c, was analyzed in [3,7].
Both groups agreed that the observed behavior was pro-
duced by the small statistical errors in the determination
of the PDF of the topological charge, the effect of which
became more and more relevant as the lattice volume was
increased. In Ref. [7] it was also noticed that by smooth-
ing the PDF flattening disappears.

The purpose of this Letter is to introduce a new nu-
merical approach to simulate �-vacuum-like models. This
approach is based on a new method to compute the PDF of
the topological charge and the use of a multiprecision
algorithm in order to compute the sum in (1) with a
precision as high as desired.

For reasons which become apparent in what follows, let
us write the partition function (1) as a sum over the
density of topological charge xn � n=V and set pV�n� �
exp��VfV�xn��, where fV�x� is a smooth interpolation of
�1=V lnpV�xn�:

ZV��� �
X

x

e�VfV �xn�ei�Vxn : (2)
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Equation (2) defines a 2� periodic function of �. Since CP
is a symmetry of the action at � � 0 and � � �, fV�x�
will be an even function. We will assume that CP is
realized in the vacuum at � � 0 since otherwise the
theory would be ill-defined at � � 0 [8]. This implies
that exp��VfV�xn�� will approach a delta distribution
centered at the origin in the infinite volume limit. In
some exceptional cases, as QCD in the chiral limit, the
function fV�x� is not defined since any topological sector
with nonvanishing charge has a vanishing probability.
However, this is a trivial case in which the theory is
independent of �.

Let us consider the partition function (2) in the com-
plex � plane, in particular, on the imaginary axis � �
�ih, and let f�x� be the infinite volume limit of fV�xn�.
All the terms entering Eq. (2) are positive definite, and
then in the infinite volume limit the free energy is given
by the saddle point. Assuming that f�x� has first deriva-
tive for any x except at most in isolated points, we can
write the saddle point equation:

f0�x� � h; (3)

which gives the external ‘‘magnetic field’’ h as a function
of the density of topological charge x.

Our proposal to compute the function f�x� is based on
the following three steps:

(i) To perform standard numerical simulations of our
system at imaginary � � �ih and to measure the mean
value of the density of topological charge as a function of
h with high accuracy (typically a fraction of a percent).
This is feasible since the system we have to simulate has a
real action. Then, Eq. (3) is used to get a numerical
evaluation of f0�x�.

(ii) To get f�x� we have to integrate f0�x�. Of all the
possible ways to do this integral, we decided to fit f0�x� by
the ratio of two polynomials, whose order is chosen to
obtain a high quality fit, and then to perform analytically
the integral of the fitting function. In this way we get a
very precise determination of f�x�, which allows us to
compute the PDF in a range varying several thousands of
orders of magnitude. This is the main advantage of our
approach when compared with other methods based on a
direct computation of pV�n�.

(iii) To use a multiprecision algorithm to compute the
partition function (2) using as input the function f�x�
previously determined.

The function f�x� obtained in step (ii) suffers from
statistical and systematic errors, the last coming from the
fact that the saddle point Eq. (3) has finite volume cor-
rections. An analysis of these errors for the models and
sizes we have studied (see below) shows that systematic
errors due to finite volume effects are smaller than the
statistical ones in the whole relevant range of x. This is the
reason why we will replace fV�xn� in Eq. (2) by its
asymptotic value f�xn� in what follows. This substitution
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has no effect in the infinite volume limit at imaginary �
and we are assuming that the same holds for real �.

Before presenting our results for the various testing
models we have analyzed, let us briefly discuss how errors
in the determination of f�x� can propagate to ZV���.
This is an important point since, as pointed out in
[3,7], the artificial phase transitions found in U(1) and
CPN were caused by the statistical errors in the determi-
nation of the PDF.

To this end, let fV�xn� be the exact value at a given
lattice volume V of the function which parametrizes the
PDF and be 
fV�xn� a given deviation from the exact
value. If we denote by Z0

V��� the partition function com-
puted with fV�xn� � 
fV�xn�, a simple calculation tells us
that this partition function is related with the exact par-
tition function ZV��� as follows:

Z0
V��� � ZV���he�V
fV �xn�i: (4)

We can at this point analyze two extreme cases. First
let us assume that 
fV�xn� vanishes everywhere except at
a given xm. Taking into account that the partition function
ZV��� which enters in the denominator of the expectation
value he�V
fV �xn�i should behave as e�VgV ���, where gV���
is the free energy density [gV�0� � 0], we should get

he�V
fV �xn�i�1�2e�V�fV �
m
V��gV �����e�V
fV �

m
V��1�cos�m��:

(5)

Since gV��� is an increasing function of �, it will be
smaller than fV�xm� near the origin, and therefore the
free energy density computed with the modified partition
function will differ from the exact one of a small quantity
of order 1

V in this region. However, at larger values of � the
function gV��� can become larger than fV�xm� and in such
a case the correction to the free energy density will be
finite or, even worse, the modified partition function can
become negative. The other extreme case is that in which
we assume that the error 
fV�xn� is constant. Under such
an assumption Eq. (4) implies that the error in the free
energy density gV��� will also be 
fV .

The previous discussion, as the results of [7], sug-
gests that correlated errors propagate in a less dramatic
way than uncorrelated ones, and this would be a good
scenario for numerical methods which, as in our ap-
proach, produce correlated errors in the determination
of fV�xn�. We have checked this interesting issue in the
two-dimensional U(1) model at strong coupling (see
below) and verified that, in fact, correlated errors in
fV�xn� induce errors of the same order in the free energy
density gV���.

To test these ideas we have analyzed three models: the
one-dimensional antiferromagnetic Ising model within
an external imaginary magnetic field, the two-
dimensional compact U(1) model with topological
charge, and CP3 in two dimensions. The coupling to
the imaginary magnetic field in the Ising model can be
141601-2
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written as i�kBT=2
P

i Si, where kB is the Boltzmann
constant and T is the temperature. For an even number
of spins, the quantity 1=2

P
i Si is an integer taking all

values between �N=2 and N=2, and therefore it can be
seen as a quantized charge. Furthermore, the theory has a
Z2 symmetry at � � 0 and � � � which is analogous of
CP in field theory. We use the notation F � J=kBT, where
J is the coupling constant between nearest neighbors. The
transfer matrix technique allows one to solve analytically
the model. For antiferromagnetic couplings, F < 0, the
magnetization is an analytic function of � between ��
and �. At � � � the system shows a first order phase
transition with a nonvanishing magnetization. From a
numerical point of view the determination of the free
energy density and order parameter through Eq. (1) in
this model has the same level of complexity of more
sophisticated models. Furthermore, in contrast to two-
dimensional U(1) gauge theory, where the PDF of the
topological charge is nearly Gaussian, the non-Gaussian
behavior of the PDF of the mean magnetization in the
antiferromagnetic Ising model makes this model a good
laboratory to check the reliability of our approach.
Figure 1 shows our numerical results for the order pa-
rameter versus � for a linear chain of 1000 spins and F �
�1=2. Statistical errors were estimated by doing
ten samples of the numerical results and applying a jack-
knife analysis. The PDF of the order parameter for such a
system takes values in a range of around 2000 orders of
magnitude. Notwithstanding that, we are able to repro-
duce the order parameter in the whole � interval within a
few percent.

The two-dimensional compact U(1) gauge model with
the � angle at strong coupling constitutes another inter-
esting check because we can compare the goodness of our
approach with the other existing simulations which
showed artificial behavior with a fictitious phase transi-
FIG. 1. Magnetization versus the imaginary magnetic field in
the one-dimensional antiferromagnetic Ising model at F �
�1=2 on a chain of 1000 sites: exact (dashed curve) and
numerical (continuous curve) results. Statistical errors are
smaller than 2%.
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tion moving to the origin when increasing the lattice
volume. Figure 2 displays our results for the topological
charge density versus � in a 80� 80 lattice at � � 0 and
� � 0:6. We are able to reproduce the exact result within
a few per thousand in the whole � interval. The agreement
between analytical and numerical results is actually im-
pressive. Furthermore, the flattening found in [3] for the
free energy density in relatively small lattices is absent in
our simulations even in the 80� 80 lattice.

To test how different kinds of errors in the determina-
tion of the function f�x� which defines the PDF of the
density of topological charge can affect the determina-
tion of the free energy and order parameter, we have
added to the measured f�x� a random relative error of
order 10�3. Figure 3 shows the order parameter obtained
in this way. As can be seen a small but random error in
f�x� propagates to the order parameter in a very dramatic
way and makes the calculation meaningless. Contrary to
that if, in order to simulate a correlated relative error of
order up to 50%, we replace the measured f�x� by the
(even) function f�x��1� 0:5 sin�x2��, the result for the
order parameter is practically indistinguishable from
the exact value for � < �=2, and the maximum deviation
is about 25%, at � � � (see Fig. 3). We conclude that
random errors in f�x� propagate in a very dramatic way
but correlated errors do not, and this helps one to under-
stand why our approach works so well.

The last model we have analyzed is CP3 in two-
dimensional Euclidean space. It is the standard wisdom
that this model shares many qualitative features with
QCD. Even if it has not been analytically solved we
believe it is worthwhile to compare our results with
previous existing numerical simulations. We studied the
lattice formulation that makes use of an auxiliary U(1)
field. Also in this model, the previous numerical simula-
tions gave artificial phase transitions with a flattening
FIG. 2. Topological charge versus � in the two-dimensional
U(1) model at � � 0 and � � 0:6 on a 80� 80 lattice.
Statistical errors are not visible at this scale. The exact result
(dashed curve) cannot be distinguished from the numerical
result (continuous curve).
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FIG. 4. Topological charge versus � in the two-dimensional
CP3 model at � � 0:6 on a 100� 100 lattice. The continuous
line (discontinuous line) reports the results obtained fitting
f0�x� with a polynomial (the ratio of two polynomials).
Statistical errors are at the 1% level.

FIG. 3. Topological charge versus � in the two-dimensional
U(1) model at � � 0. The continuous curve is the exact result,
the dashed curve is the result obtained by substituting f�x� by
f�x��1� 1

2 sin�x
2��, and the dotted curve is the result obtained

by adding a random error of the order of 0.1% to f�x�.
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behavior for the free energy density at a �c decreasing
with the lattice volume [3,6].

Figure 4 shows our results for the order parameter
versus � at � � 0:6 on a 1002 lattice. We have chosen
this particular � value in order to compare directly
with results reported in [3]. In our simulations we have
no trace of the fictitious phase transition found in [3].
Furthermore, the order parameter is clearly different
from zero at � � �; hence CP is spontaneously broken
at this � value. An open question is how CP is realized in
the continuum limit [9]. A more extensive analysis of this
model, including a study of the behavior of the order
parameter in the continuum limit, and an analysis of
statistical and systematic errors involved in our approach,
will be published elsewhere. What is interesting to notice
here is that our results do not suffer from artificial phase
transitions caused by statistical errors in the determina-
tion of the PDF.

In the three models analyzed the finite size effects in
f0�x� cannot be appreciated since they are completely
masked by the small statistical errors. For instance, finite
size effects can be exactly computed in the Ising model:
they are exponentially small with the lattice size. This is a
general feature of noncritical systems. However, volume
effects might be troublesome in the analysis of the con-
tinuum limit. Concerning systematic errors due to the
choice of a particular fitting function for f0�x�, the differ-
ence between the numerical and exact results for the Ising
and compact U(1) models (beside the statistical errors)
reported in Figs. 1 and 2 give us an idea of the order of
magnitude of these errors. Of course systematic errors can
depend on the model as well as on the parameters. In CP3

at � � 0:6 we did also a five-parameter polynomial fit of
141601-4
the data for f0�x� in the relevant x interval. The discrep-
ancy between the topological charge density obtained in
the two cases is at most 7% (see Fig. 4).

Similar ideas to those presented in this work have been
proposed and promisingly applied to a matrix model of
QCD at finite density in [10].
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