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Specific Heat and Thermal Conductivity in the Mixed State of MgB2
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The specific heat C and the electronic and phononic thermal conductivities �e and �ph are calculated
in the mixed state for magnetic fields H near Hc2 , including the effects of supercurrent flow and
Andreev scattering. The resulting function C�H� is nearly linear while �e�H� exhibits an upward
curvature near Hc2 . The slopes decrease with impurity scattering which improves the agreement with
the data on MgB2. The ratio of phonon relaxation times �n=�s � g�!0; H� for phonon energy !0 is
smeared out around !0 � 2� and tends to one for increasing H. This leads to a rapid reduction of
�ph�H� in MgB2 for relatively small fields due to the rapid suppression of the smaller energy gap.
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energy gaps where the smaller gap is induced by Cooper
pair tunneling from the band with the larger gap [7]. The
observed increase of ��H� above H�2� is attributed to the
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Numerous experiments indicate that the superconduct-
ing state of MgB2 (Tc � 40 K) [1] is a conventional
s-wave pairing state mediated by phonon exchange.
Nevertheless, the theoretical explanation of physical
quantities is demanding because two energy gaps are
formed where the larger gap �1 is associated with the
nearly cylindrical � sheets of the Fermi surface and the
smaller gap �2 with the three-dimensional � sheets.
Analysis of the temperature dependence of the measured
thermal conductivity in the basal plane of MgB2 [2] gives
evidence for two gaps on different Fermi surface sheets.
The situation is complicated because the thermal conduc-
tivity � is a sum of an electronic part �e and the phononic
or lattice conductivity �ph. In Ref. [2] �e and �ph were
calculated with help of the BCS theory [3], where �e is
limited by elastic scattering (scattering by phonons is
omitted) and �ph is limited by electron scattering. This
theory for �ph is supplemented by adding to the phonon
relaxation rate due to scattering by electrons, the relaxa-
tion rates due to scattering by point defects [4], and other
defects. Note that the peak in �ph below Tc in the cuprate
superconductors has been fitted by including scattering by
sample boundaries, sheetlike faults, and dislocations [5].

Recently, the ab-plane thermal conductivity of MgB2

has been measured as a function of magnetic field H with
orientations both parallel and perpendicular to the c axis
[6]. At low temperatures, ��H� drops steeply for increas-
ing H up to a relatively low field which we denote by H�2�

c2
(� 1 kOe), and then it rises continuously up to Hc2 (’
30 kOe for H k c). The first drop of � is interpreted as due
to the behavior of �ph�H� which is caused by a strong
suppression of the smaller gap �2 by relatively small
fields. This leads to a rapid increase in the number of
those quasiparticles that dominate the scattering of pho-
nons [2]. The rapid suppression of the smaller gap can be
explained in terms of a two-band model with different
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increase of �e�H� because �ph has already reached its
normal-state value [6]. Since this field dependence of
�e�H� at low temperatures is qualitatively similar to
that of the specific heat coefficient ��H� [8,9], it is con-
cluded that the growth of �e�H� is due to the rapid
increase of quasiparticles in the vortex cores associated
with the larger energy gap.

In this Letter, we present theories for the specific heat
and the electronic and phononic thermal conductivities in
the vortex state for applied fields near the upper critical
field Hc2. For simplicity, we consider only one isotropic
s-wave pairing gap either on a cylindrical Fermi surface
with H k c , or on a spherical Fermi surface. Our goal is to
explain the measured quantities ��H� and �e�H� near Hc2
( ’ 30 kOe), and �ph�H� below the effective upper critical
field H�2�

c2 ( � 1 kOe) for the vortex lattice associated with
the smaller energy gap. Our theories are based on the
normal and anomalous Green’s functions G and F ob-
tained from the Gorkov integral equations with kernels
given by the product of Abrikosov vortex lattice order
parameters ��r1����r2� and the phase factor due to the
magnetic field [10]. These Green’s functions depend sen-
sitively on sin�, where � is the angle between the quasi-
particle momentum p and the magnetic field H. For
� ! 0, G and F tend to the Green’s functions for a BCS
superconductor while, for � ! �=2, they take into ac-
count the effects of supercurrent flow and Andreev scat-
tering due to the vortex lattice. This theory has been
applied previously to calculate �e�T;H� for energy gaps
with line nodes similar to those occurring in the high-Tc
cuprates and Sr2RuO4 [11].

A simplified version of the theory in Ref. [10], which
has been derived from the Eilenberger equations [12],
yields for the spatial average of the density of states:

N�!; ��=N0 	 A��; ~��; ��
 2002 The American Physical Society 137003-1



VOLUME 89, NUMBER 13 P H Y S I C A L R E V I E W L E T T E R S 23 SEPTEMBER 2002
The quantities appearing here are defined as follows: z �
2��~�� 
 i��=v��= sin� with � � ��p;H� , � �
�2eH��1=2 , ~�� � ��=v , � � !=� , ~��2 � �Hc2 �H�=
6�AH , �2 � �2

0�T��1� �H=Hc2� , and w�z� �
exp��z2�erfc��iz� . Here v is the Fermi velocity, �A is
the Abrikosov parameter which we take as 1.2, �0�T� is
the BCS gap, and � is the normal-state impurity scatter-
ing rate. The specific heat C is given by C �
N0T

R
1
0 dxx2 sech2�x=2�A�Tx=�� . At low temperatures

(T � �), C � �s�H�T , where the coefficient �s�H� is
proportional to A�� � 0�. In Fig. 1, we have plotted
A�� � 0� versus H=Hc2 for sin� � 1 corresponding to a
cylindrical Fermi surface and H k c, and several impur-
ity scattering rates " 	 �=�0 . A is seen to be nearly
linear near Hc2 with a slope at Hc2 that decreases for
increasing ". In Fig. 1, we also show the angular average
!AA �

R�=2
0 d� sin�A��� which corresponds to a three-di-

mensional Fermi surface. Comparison with the solid
curves in Fig. 1 shows that the slopes at Hc2 are decreased
by the angular average. Note that our results are strictly
valid only in the vicinity of Hc2. However, solution of the
Eilenberger equations for a vortex lattice shows that the
spatial average of the resulting density of states is well
approximated by A��� for fields down to about �1=2�Hc2
[13]. The solid curve of A vs H=Hc2 for " � 0:5 in Fig. 1
agrees qualitatively with the measured field dependence
of the specific heat coefficient �s�H� at low temperatures
and fields near Hc2 [8,9].

We turn now to the theory of the electronic thermal
conductivity �e in the vortex state near Hc2 which has
been developed in Ref. [11]. These expressions are easily
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FIG. 1. Reduced density of states at zero energy, A�� �
0; H� � �s�H�=�n vs H=Hc2 for impurity scattering rates " �
�=�0 � 0:1, 0.2, and 0.5 (from bottom to top). Solid curves for
angle � � �=2 corresponding to H k c for a cylindrical Fermi
surface (� is the angle between the quasiparticle momentum p
and the field H). Dashed curves for the average of A over �
corresponding to a spherical Fermi surface. The dots are
reduced data from Ref. [8] for MgB2 at T � 3 K .
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modified to apply to an isotropic s-wave pairing state and
a field along the c axis. Employing the expression valid at
low temperatures, we obtain for the ratio �es=�en as a
function of H=Hc2 the plots shown in Fig. 2 for constant
sin� � 1 and impurity scattering rates " � 0:1, 0.2, and
0.5. These plots exhibit upward curvatures with decreas-
ing slopes at Hc2 for increasing values of ". In Fig. 2, we
have also plotted the corresponding results for the angu-
lar averages over � of �es=�en. Comparison with the
measured ��H� near Hc2 , which is presumably domi-
nated by the field dependence of �e�H� [6], shows that
the measured upward curvature towards Hc2 is qualita-
tively best described by the upper solid curve in Fig. 2 for
the relatively large impurity scattering rate " � 0:5.

It was argued in Ref. [6] that the similar field depen-
dencies of the specific heat and electronic thermal con-
ductivity can be explained in terms of the relationship
�e � CevF‘=3, where ‘ is the mean-free path. In fact, our
theoretical expression for �e has a similar form if one sets
‘ � vF�e, where �e � 1=Im$0 with Im$0 � �
 �A [11].
Here � is the impurity scattering rate and �A is the
scattering rate due to Andreev scattering of the quasi-
particles by the vortices. �A is shown as a function of
angle � for different values of � and ~�� in Ref. [14]. These
plots show that, for extended states (� � 1), �A increases
from zero as � increases from 0 to �=2. This means that
the Andreev scattering rate has a maximum for quasi-
particles moving perpendicular to the vortex axis. For
increasing field (decreasing ~��), �A decreases which has
the effect that the curve for �es=�en exhibits an upward
curvature in comparison to Ce which has a slight down-
ward curvature for increasing field.
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FIG. 2. Electronic thermal conductivity ratio �es=�en at low
temperatures vs H=Hc2 for impurity scattering rates " � 0:1,
0.2, and 0.5 (from bottom to top). Notation as in Fig. 1: Solid
curves for angle � � �=2. Dashed curves for the average over
�. The dots (triangles) are reduced data from Ref. [6] for MgB2

at T � 7:94 K (T � 5:13 K ).
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Until now, there exists only a phenomenological theory
for the phonon heat transfer in the mixed state where the
phonons are scattered by vortices consisting of normal-
state cylinders [15]. We develop here the microscopic the-
ory of �ph (limited by electron scattering) in the vortex
state in close analogy to the theory for the BCS state [3].
In that case, the sum of probabilities for absorption and
emission of phonons by quasiparticles yields a relaxation
rate 1=�s for a phonon of energy !0 which is proportional
to the integral over quasiparticle energy E of the expres-
sion jEE0=""0j�1� �2=EE0�f�E=T� � f�E0=T�. Here,
E=" � E=�E2 � �2�1=2 is the density of states, E0 � E

!0, and f�E=T� is the Fermi function. In the mixed state
near Hc2, the density of states E=" is replaced by A��� as
137003-3
given in Eq. (1). The coherence term ��="���="0�, which
arises from the matrix elements for quasiparticle scatter-
ing, is replaced by FFy, where the anomalous Green’s
function F is given in Ref. [11]. The spectral function of F
yields the following analog of �=" :
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The argument z was defined below Eq. (1). The functions
A��� and B��� are even and odd in �. For �! 0, they
tend to the BCS functions !=�!2 ��2�1=2 and �=�!2 �
�2�1=2, respectively. In this way, we obtain the following
for the ratio of phonon relaxation times in the normal and
superconducting states (denoted by g in Refs. [2,3,5]):
�n=�s � g��0�

� �1� exp���0�=T��2=�0�
Z 1

0
d�f�����0=2��=Tf����
�0=2��=T

� �A����0=2�A��
�0=2� � B����0=2�B��
�0=2�: (3)
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FIG. 3. Ratio of phonon relaxation times �n=�s � g��0� due
to electron scattering at low temperatures vs �0 � !0=�,
where !0 is the phonon energy and � � ��H� the effective
energy gap. From top to bottom, ~�� � 0:1, 0.2, 0.3, and 0.6,
corresponding to H=Hc2 � 0:93, 0.78, 0.61, and 0.28. Also,
" � 0:1 and � � �=2 (notation of Fig. 1). The dashed curve
refers to ~�� � 0:6 and impurity scattering rate " � 0:5 .
The quantity �0 � !0=� is the phonon energy !0 div-
ided by the effective gap � � ��H� . For T � �, the
function ff in the integrand of Eq. (3) is approximately
one in the range from � � 0 to �0=2 and zero above
�0=2. In Fig. 3, we show some examples of the function
g��0� for various parameter values. For increasing ~��, or
decreasing field, the function g tends to the BCS step
function which is zero in the range from �0 � 0 to 2,
and �=2 for �0 > 2 (see Fig. 1 of Ref. [5]). The physical
meaning of g at low temperatures for the BCS super-
conductor is that the minimum energy of a phonon for
creating a pair of quasiparticles is !0 � 2�. Figure 3
shows that, for increasing field, the relaxation rate is
more and more smeared out and the ratio �n=�s tends to
one. A similar effect occurs for increasing impurity
scattering rate " (see the dashed curve in Fig. 3).

The expression for the phonon thermal conductivity
limited by electron scattering and several other scattering
processes is given by [5]

�ph � At3
Z 1

0
dx

x4 ex

�ex � 1�2
�1
 +t4x4 
 �t2x2 
 "tx


 �txg�xT=���1:

(4)

Here x � !0=T, t � T=Tc, and the coefficients A, +, �, ",
and � refer to scattering by sample boundaries, point
defects, sheetlike faults, dislocations, and quasiparticles,
respectively. For t � 1 and T � �, the argument of
g��0� in Eq. (4) is approximately equal to zero. Taking
the limit �0 ! 0 in Eq. (3) and noting that the coherence
term B vanishes at �0 � 0, we obtain g��0 � 0� �
�A��0 � 0; ~��; ��2 . For constant � � �=2, this expres-
sion yields the field dependence of �n=�s for the case
H k c and a cylindrical Fermi surface. For a three-
dimensional Fermi surface, which is presumably more
appropriate for the quasiparticles associated with the
smaller gap in MgB2, we have to multiply �A�0; ��2 by
sin� and integrate over � from 0 to�=2. In Fig. 4, we have
plotted our results for g at � � �=2 and for the angular
average of g vs H=Hc2 for impurity scattering rates " �
0:1 and 0.5.

The measured �ph at H � 0 [2] has been analyzed in
terms of an expression which is equivalent to our Eq. (4) ,
apart from the term proportional to �. By inserting two
different contributions for the electron scattering term �
137003-3
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FIG. 4. Ratio �n=�s � g��0 � 0; H� vs H=Hc2 for " � 0:1
(lower curves) and " � 0:5 (upper curves) with the notation of
Fig. 3. This quantity determines the reduction of the phonon
thermal conductivity at low temperatures due to the increase of
scattering by quasiparticles. The solid curves are the average of
g over � corresponding to a spherical Fermi surface and the
dashed curves are g for constant � � �=2.
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corresponding to different gaps �1 and �2, the fitting
procedure indicated that the dominant part of the scatter-
ing of phonons by electrons is provided by that part of the
electronic excitation spectrum experiencing the smaller
gap, �2. According to the two-band theory of Ref. [7],
this smaller gap is suppressed by a relatively small effec-
tive upper critical field H�2�

c2 which leads to the measured
fast drop of �ph�H� as H increases from 0 to H�2�

c2 [6]. We
conclude that the measured field dependence of �ph�H�
below H�2�

c2 at low temperatures can be explained by in-
serting in Eq. (4) the values of the various constants
obtained for H � 0 and, for �n=�s � g�H�, the angular
average of g��0 � 0� � �A��0 � 0; ~��; ��2 . The behav-
ior of g�H�, which determines the form of the fast reduc-
tion of �ph�H�, depends on the impurity scattering rate "
(see Fig. 4).

An important effect on the upward curvature of �es=
�en arises from the decrease of the Andreev scattering
rate �A with increasing field. This decrease is given ap-
proximately by the expression �A =�0 �

����
�

p
�~��2= sin���

exp���2�~��= sin��2, where ~��2 � �Hc2 �H�=H . It is in-
teresting that the exponent in this expression, in particu-
lar, the term �sin���2 , is similar to the exponent in the
scattering rate 1=�v which has been derived previously
[16]. In that model, a quasiparticle is converted into a hole
due to Andreev reflection by vortex screening currents.
This process corresponds just to the imaginary part of the
self-energy calculated in Ref. [10].

Our theory is strictly valid only for fields near the
upper critical field Hc2 . However, recent numerical solu-
137003-4
tions of the quasiclassical Eilenberger equations for the
Abrikosov vortex lattice [13] have shown that the ana-
lytical expressions for the density of states [10,12] [here
the function A���] yield at low energies impressively
good results over the whole range of fields down to Hc1 .
These results for low energies are important for the
calculation of thermodynamic quantities. We expect that
this is also true for the function B���, the spectral func-
tion of the anomalous Green’s function.

In conclusion, we have employed microscopic theories
for the electronic specific heat C�H� and the thermal
conductivity �e�H� and developed a microscopic theory
for the phononic thermal conductivity �ph�H� to explain
the measured field dependence of these quantities in the
mixed state of MgB2. We find that impurity and Andreev
scattering, as well as Fermi surface anisotropy, give rise
to large effects. For sufficiently large impurity scattering
rate, one can approximately fit the data for C�H� and
�e�H� for MgB2 over a broad field range below Hc2 .
Our new theory for �ph�H� is capable of describing the
observed rapid reduction of the total � of MgB2 for small
fields if this is actually caused by suppression of a second
smaller energy gap.

We thank T. Dahm for helpful discussions.
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