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Finite-Size Effects in Tunneling between Parallel Quantum Wires
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We present theoretical calculations and experimental measurements which reveal finite-size effects
in the tunneling between two parallel quantum wires, fabricated at the cleaved edge of a GaAs=AlGaAs
bilayer heterostructure. Observed oscillations in the differential conductance, as a function of bias
voltage and applied magnetic field, provide direct information on the shape of the confining potential.
Superimposed modulations indicate the existence of two distinct excitation velocities, as expected from
spin-charge separation.
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FIG. 1. Schematics of the circuit (a) and the model (b). Awire
of length L runs parallel to a semi-infinite wire. Boundaries of
the wires are formed by potentialsU1�x� andU2�x�. Also drawn
in (b) is a one-electron wave function  �x� in the upper-wire
confinement U1�x�. The energy and momentum of the tunneling
has been made in experimental investigations of their electrons are governed by voltage V and magnetic field B.
One-dimensional (1D) electronic systems are a very
fertile ground for studying the physics of interacting
many-body systems. In one dimension, the elementary
excitations are collective spin and charge modes, the
spectrum of which is strongly influenced by the
Coulomb interaction [1]. An electron entering such a
system must, therefore, decompose into the correspond-
ing eigenmodes, resulting in a suppression of the tunnel-
ing density of states. This suppression was detected in a
variety of experiments, such as tunneling from metal
contacts into carbon nanotubes [2] and resonant tunnel-
ing in one dimension [3]. A unique feature of interacting
electrons in one dimension, described by Luttinger-liquid
(LL) theory [1], is the decoupling of the spin and charge
degrees of freedom, each of which propagates with a
different velocity determined by the Coulomb inter-
action. To date, direct experimental verification of this
phenomenon is lacking. Moreover, issues pertaining to
the decoherence and relaxation of the elementary excita-
tions of the LL remain a challenge both theoretically and
experimentally.

Here we report a detailed experimental investigation
and theoretical explanation of a set of interference pat-
terns in the nonlinear tunneling conductance between
two parallel wires that were first reported in Ref. [4]. A
sketch of the tunneling geometry in shown in Fig. 1(a).
The interference appears because the tunneling process is
coherent to a very high degree and is due to the finite
length of the tunnel junction. Awealth of information can
be extracted from the interference: The pattern itself
encodes microscopic details of the potentials in the wires,
while the structure of its envelope reflects the presence
of two distinct excitation velocities per electron mode in
the data, as expected from spin-charge separation. The
decay of interference may also yield information on de-
coherence processes of the elementary excitations in 1D
systems.

Fabrication of 1D quantum wires of exceptional quality
has been achieved by cleaved edge overgrowth in
GaAs=AlGaAs heterostructures [5], and much progress
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transport properties [4,6]. Recently, a method was devel-
oped to measure tunneling between two parallel wires of
this type [4]: The wires are formed at the cleaved edge of
a wafer containing two parallel quantum wells, only one
of which is occupied by a two-dimensional (2D) electron
gas (2DEG) (cf. Ref. [4] for details on the sample). A
voltage bias V between the wires forces electrons to
tunnel through a narrow AlGaAs barrier separating
them [see Fig. 1(a)]. Measurements of the differential
conductance G at 0:25 K are made with standard lock-
in techniques, as a function of V and B, a magnetic field
applied perpendicular to the plane containing the wires.
This allows one to determine the complete dispersion
relations of the elementary excitations in the quantum
wires [4]. Prominent features of the measured G�V; B�
can be understood in terms of a model which considers
two infinite parallel wires, and accounts for the electron-
electron interactions by means of LL theory [1,4,7]. On
the other hand, an observed oscillation pattern results
from the finite length of the upper wire (UW). We show
that key features of the oscillations can be understood
 2002 The American Physical Society 136805-1



FIG. 2. Oscillations ofG�V; B� at low field from 2 �m (b) and
6 �m (c) junctions. (A smoothed background has been sub-
tracted to emphasize the oscillations.) The arrows in (c) mark
the minima of the power P of the oscillations in magnetic field
B as a function of voltage V. (a) P for (b) (solid line) and (c)
(dashed line), for which the abscissa is 2:3� V. The brightest
lines in (b) and (c), corresponding to tunneling between the
lowest modes, break the V-B plain into regions I, II, and III.
Additional bright lines in II arise from other 1D channels in the
wires and are disregarded in our theoretical analysis.
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assuming that the ends of the UW are defined by a soft
confining potential, rather than assuming sharp, square-
well confinement. Most of our discussion will employ a
model of noninteracting electrons, which explains the
most prominent features of the interference patterns.
Interaction effects will be discussed at the end.
Figure 1(b) schematically shows the potentials U1�x�
and U2�x� felt by electrons in the wires. Electrons in the
UWare confined to a region of finite length by top gates at
both ends of the junction. Electrons in the lower wire
(LW) are reflected at the left end, but can pass under the
right-hand gate, rendering it semi-infinite. The effective
tunneling region is determined by the length of the UW,
which is approximately the region jxj< L=2 in Fig. 1(b).
The magnetic field gives a momentum boost �hQ � eBd to
electrons tunneling from the UW to the LW, �e being the
electron charge and d the distance between the centers of
the wires; V > 0 favors tunneling of electrons from the
LW to the UW.

As observed in Ref. [4], the differential conductance
has strong peaks along a set of curves in the V-B plane,
where tunneling can occur with conservation of energy
and momentum between a Fermi point in one wire and
an electron mode in the other wire. Here we focus on the
region near the intersection of the dispersion peaks in
G�V; B� at zero magnetic field [4] and voltage, V �
�EF2 � EF1�=e, necessary to overcome the difference in
Fermi energies EF1 and EF2 of the UW and LW, respec-
tively. (In the experiments, several electron modes may
be occupied in the wires. Here we consider only the mode
in each wire with the largest Fermi momentum along
the wire.) The most spectacular manifestation of the
breaking of translational invariance is the appearance
of a regular pattern of oscillations away from the dis-
persion curves. Figure 2 shows typical examples of the
patterns measured at low magnetic field. The lines that
correspond to the dispersions appear as pronounced peaks
that extend diagonally across the figure. Additionally,
we observe numerous secondary peaks running parallel
to the dispersions. These sidelobes are asymmetric: They
always appear to the right of the principal dispersion
peaks. The result is a checkerboard of oscillations in
region I, stripes in region II, and no regular pattern in
region III (see Fig. 2). When the lithographic length L
is increased from 2 �m [cf. Fig. 2(b)] to 6 �m [cf.
Fig. 2(c)], the frequency in V and B increases by a factor
of � 3. The period is approximately related to L, d, and
the Fermi velocity vF by j�VjL=vF � j�BjLd � 2� �h=e.
Upon close examination of Figs. 2(b) and 2(c), one can
discern a modulation of the interference that causes a
series of faint streaks parallel to the B axis, where the
oscillations are suppressed. The strength of this modula-
tion is shown in Fig. 2(a). As explained below, this is a
moiré pattern created by two superimposed sets of inter-
ference, each resulting from a distinct velocity that is
present in the data.
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We base our theoretical analysis on a phenomenolog-
ical tunneling Hamiltonian

Htun � T
X
s

Z
dx�y

s1�x��s2�x�e�iQx � H:c: ; (1)

where �si�x� is the spin-s electron field operator for the
ith wire (i � 1 denotes the UW and i � 2 the LW). Since
the Zeeman energy in GaAs is small, we ignore the spin
degrees of freedom, and characterize the electrons in the
UW by a discrete set of energy eigenstates  n�x�. The
eigenstates in the lower wire form a continuum, which we
write as ’k2�x�, indexed by wave vector k2. Treating
tunneling to the lowest nonvanishing order in perturba-
tion, we find for the current

I / sgn�V�jTj2
X
m

jM�n;Q; V�j2 ; (2)

where n � nF � sgn�V�m, with nF being the index of the
state  n just below EF1 ;

P
m is a sum over integers m

with 
sgn�V� � 1�=2<m< ejVjL=� �hvF; and M is the
tunneling matrix element between state  n and state ’k2 ,
136805-2
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FIG. 3. (a) @jM���j2=@V, obtained numerically using the
WKB wave function  100�x� and # � 6 in Eq. (4). The dotted
curve shows an approximation [Eq. (5)]. (b) Calculated oscil-
lation pattern G / V@jMj2=@V using the numerical result from
Fig. 3(a). vF1 � vF2 � vF and �kF � 4�=L.
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the energy of which is lower by eV. Specifically, M is
given by

M �
Z
dx 


n�x�e�iQx’k2�x� : (3)

If ejVj is not too large, we can linearize about the Fermi
wave vectors kFi , and k2 is then given by �k2 � kF2�vF2 �
sgn�V�vF1m�=L� eV= �h.

As a starting point, we consider infinite square-well
confinement in the region jxj< L=2 of the UW, so that
 n / sin
n��x=L� 1=2��. We also assume that the po-
tential in the LW is infinite for x < x0, so that the states in
the LW have the form ’k2 / sin
k2�x� x0��. In line with
the experiments, we assume that kF1;2 differ slightly by
�kF � kF1 � kF2 , but neglect the difference in the vF’s of
the two wires, which is only a few percent [4]. As a result,
jMj2 is independent of the index n and is given by jMj2 �
jM���j2 � jM���j2, where M��� � sin
 ���L=2�=
 ���L=2�
and  ��� ��kF� eV=�hvF�Q. (In the limit L!1, the
two terms jM���j2 become ! functions.) Similar results
were obtained by Boese et al. [8] who considered tunnel-
ing between two infinite noninteracting wires through a
window of finite length L [9].

Differentiating Eq. (2) to obtain G�V; B�, we find that
whenever the applied voltage matches a discrete energy
level of the UW with the Fermi level of the LW, the sum in
Eq. (2) exhibits a step, yielding a series of !-function
peaks in the conductance. These peaks are not seen in the
experiments, possibly because of smearing due to finite
temperature and/or 1D-2D scattering in the UW. We may
therefore disregard the discreteness of the sum and write
I / V jM�Q;V�j2, which gives a pronounced oscillatory
contribution / V@jMj2=@V to G. (When L! 1, this
oscillation pattern disappears and the conductance be-
comes G / jM�Q;V�j2 resulting in bright peaks along
the dispersion curves.) There are several features in the
data, most notably the interference sidelobe asymmetry,
not captured by this idealized model. The asymmetry of
sidelobes can be well understood if, instead of assuming
square-well confinement, we consider a smooth potential
well U1�x�, giving rise to a WKB wave function form for
the electronic states in the UW [see Fig. 1(b)].

As an example, we model the UW by a symmetric
potential of the form

U1�x� � EF1 j2x=Lj
# : (4)

The limit #! 1 recovers the case of a square quantum
well while a finite value of # � 2 defines smooth walls.
The appropriate choice of # should increase with L. As a
specific example, we consider the case # � 6. We assume
that the boundaries are soft enough so that one can use a
WKB approximation for wave function  n in Eq. (3). We
set nF � 100 for the state at the Fermi energy in the UW,
which corresponds to electron density of � 100 �m�1 [4]
in the most occupied 1D channel, with L � 2 �m. The
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theory again gives two separate contributions jM���j2 to
jMj2, which are functions of the variables  ���, as before.
In Fig. 3(a), we plot the results of a numerical calculation
of @jM���j2=@V as a function of  ���. Unlike the square-
well case, the smooth boundaries lead to a very asym-
metric oscillation pattern for positive and negative  ���.
Furthermore, the amplitude of the oscillations in Fig. 3(a)
drops much slower than in the case of infinitely steep
walls. Results of a numerical calculation of G�V;B� for
the soft-confinement model, obtained from Eq. (3), are
displayed in Fig. 3(b). They are very similar, at least
qualitatively, to Fig. 2(b).

The numerical results can be understood analytically
as follows. To find M���, we substitute eik2x for ’k2
in Eq. (3), and replace  n by the right-moving WKB
component k�x��1=2eikF1xe�is�x�, where k�x� � kF1
1�
U1�x�=EF1�

1=2 and s�x� �
R
x
0 dx

0
kF1 � k�x0��. Using k2 �
Q � kF1 �  ���, we see that if 0<  ��� < kF1 , there are
two points, x� > 0 and x� < 0, where k�x� � k2 �Q
and the integrand in Eq. (3) has a stationary phase. We
evaluate the integral near these two points using the
method of steepest descents, and add the results to obtain
an estimate of M���. In the case of a symmetric potential,
U1�x� � U1��x�, one finds
136805-3
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M��� �

����������������������
16�EFk�2

F

U0
1�x

��

s
cos

�
 ���x� � s�x�� �

�
4

�
: (5)

In Fig. 3(a), we plot @jM���j2=@V, obtained using Eq. (5)
as a dotted curve: it is in an excellent agreement with the
full numerical calculation (solid line) for large positive
 ���. The stationary phase approximation (SPA) is bad for
small values of  ���, where the conditions for its validity
are violated. For the potential of Eq. (4), 2x�=L �

2 ���=kF�

1=# for  ��� � kF, and the phase 
 ���x� �
s�x��� in Eq. (5) is equal to  ���x�#=�#� 1�. For nega-
tive  ���, the equation k�x� � k2 �Q does not possess a
real-valued solution, but after deforming the contour of
integration [Eq. (3)] into the complex plane, we obtain a
complex-valued solution 2x=L � �2j ���j=kF�1=#e�i�=#.
The argument of the cosine in Eq. (5) then has an
imaginary part, which causes the magnitude of jM���j2

to rapidly fall by a factor of � e�2�2=# over each period of
oscillation. The approximation [Eq. (5)] can be used to
predict both the period of the conductance oscillations
and their amplitude. The period of the oscillations in the
case of smooth confinement is given by � ��� �
2�=�x� � x��, rather than � ��� � 2�=L for the
square-well potential. In particular, this means that at
low  ��� the period can be significantly larger than the
value 2�=L, which it approaches for large  ���. The
prefactor 1=U0

1�x
�� in jMj2 falls off less rapidly with

 ��� in the case of a smooth potential than the 1=
 ����2

dependence for the square well. For Eq. (4), we find
1=U0

1�x
�� / 
 ����1=#�1, which goes only as 1= ��� for

large # or 1=
���������
 ���

p
for # � 2. (Because of the WKB

approximation, we cannot recover the square-well result
by setting #! 1 in our expressions.) A larger period for
small  ��� and relatively slow falloff of the amplitude
with increasing  ��� are both qualitatively consistent with
the experimental results.

An analysis using the SPA and WKB approximations
can also be applied to an interacting electron system in a
pair of wires with soft confinement. The conductance is
determined by Green’s function G12 � h
�y

s2�s1�x; t�;
�y
s01�s02�x0; 0��i. The right- and left-mover contributions

to G12 can be approximated by the respective contribu-
tions C1

R;L for an infinite wire, given by LL theory [7],
multiplied by phase factors of the form e�i
s�x��s�x

0��. For a
pair of coupled, nearly identical wires, the leading singu-
larities in C1

R;L occur at velocities vc and vs, correspond-
ing to charge and spin excitations that have opposite sign
in the two wires, as the symmetric modes are not excited
in the tunneling process.

We find that LL theory preserves the key qualitative
features in Fig. 3(b), such as the asymmetry of the inter-
ference pattern, but brings about additional features re-
sulting from the presence of two distinct velocities. In
particular, the main dispersion peaks split into two lines
with slopes defined by vc and vs. As a consequence, the
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overlap of the interference sidelobes formed along the
dispersion slopes creates a moiré pattern resulting in a
periodic modulation of the conductance oscillations
along the voltage axis. The distance between the corre-
sponding stripes of suppressed conductance running par-
allel to the field axis is �Vslow � 2� �hvcvs=eL�vc � vs�,
which is larger than the period of oscillations, �Vfast �
4� �hvcvs=eL�vc � vs�. Such a beating phenomenon in the
interference is seen in Fig. 2 and may thus be a direct
consequence of spin-charge separation in one dimension.
For the 2 �m wire, from the data in Figs. 2(a) and 2(b),
we estimate �Vslow � 1:8� 0:4 mV and �Vfast � 0:7�
0:1 mV, and then find vs=vc � 0:67� 0:07. This result
agrees with estimates made previously in a different
regime [4]. A detailed comparison between theory and
experiment can thus be used to study electron-electron
interactions as well as the shape of the confining poten-
tials along the quantum wires. Another effect predicted
by LL theory, and present in the data, is a decrease in the
value ofG at low bias, i.e., zero-bias anomaly. In the limit
L! 1, the interference sidelobes disappear, and what
remains for the interacting wires are the split dispersion
peaks, given by the LL theory of Ref. [7]. A more thor-
ough discussion of LL theory for the double-wire system
will be given elsewhere [10].
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