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Nonequilibrium Transport through Double Quantum Dots:
Kondo Effect versus Antiferromagnetic Coupling
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We theoretically study the nonequilibrium transport properties of double quantum dots, in both series
and parallel configurations. Our results lead to novel experimental predictions that unambiguously signal
the transition from a Kondo state to an antiferromagnetic spin-singlet state, directly reflecting the physics
of the two-impurity Kondo problem. We prove that the nonlinear conductance through parallel dots
directly measures the exchange constant J between the spins of the dots. In serial dots, the nonlinear
conductance provides an upper bound on J.
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netic impurities. The question of whether and how this FIG. 1. (a) DQD’s in series. (b) DQD’s in parallel.
Introduction.—It is now well established that quantum
dots (QD’s) [1] are artificial realizations of the Anderson
model [2] and, then, behave as Kondo impurities at very
low temperatures [3]. Recent and ongoing research study-
ing different aspects [4] of the Kondo effect in QD’s
has renewed the interest in this important problem of
condensed matter physics. In view of these and recent
experiments studying quantum coherence in double quan-
tum dots (DQD’s) [5], it is thus a timely question to ask
what happens when two QD’s in the Kondo regime are
coupled [6].

The interest in studying DQD’s is twofold: (i) The rapid
developments in the fields of spintronics and quantum
information processing (QIP) have made it desirable to
understand the behavior of spins which are confined to
nanostructures. In a serial DQD with two electrons, the
interdot coupling tC and the intradot on-site Coulomb
interaction U generate many-body states. For an isolated
DQD, the ground state is a spin singlet. This ground state is
an entangled state with possible applications in QIP [7].
The excitation energy to the closest triplet state is given
by the antiferromagnetic (AF) exchange constant J �

tC=2�
����������������������������
�U=tC�2 � 16

p
� �U=tC�� � 4t2C=U. (ii) DQD’s

coupled to external leads are fully tunable, allowing one
to investigate in a well controlled manner different regimes
of interest. If only spin fluctuations are important, this
system can be regarded as an artificial version of the
two-impurity Kondo problem [8]. Early studies of this
problem by Jones et al. [9] demonstrated that the competi-
tion between the Kondo effect and antiferromagnetism
appears as a quantum critical phenomenon when J ’
2:2T0

K (T0
K is the Kondo temperature of each single impur-

ity) when there is an even-odd parity symmetry. When this
symmetry is broken, the critical transition is replaced by a
crossover [10–12]. This competition determines the behav-
ior of different strongly correlated electron systems like,
e.g., heavy-fermion systems [2]. Importantly, DQD’s, un-
like bulk metals with magnetic impurities, allow study of
this problem at the level of two fully tunable single mag-
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competition manifests in the nonequilibrium transport
properties through DQD’s is nontrivial. It will be addressed
in this Letter.

Transport through DQD’s in the Kondo regime has al-
ready received some theoretical attention [8,13–15], but a
study of the nonequilibrium transport properties when
there is an interplay between antiferromagnetism and
Kondo effect has been lacking. We study two different
experimental realizations of a DQD system: serial
[Fig. 1(a)] and parallel [Fig. 1(b)] configurations. Our
main findings can be summarized in Figs. 2(b) (serial
DQD) and 3 (parallel DQD) where we prove that the non-
linear conductance G 
 dI=dVdc directly reflects the
physics of the Kondo state �KS� ! AF transition: in both
configurations, the key feature of this transition is that the
zero-bias anomaly in G splits upon changing from J=TK <
�J=TK�c ’ 2:5 to J=TK > �J=TK�c ’ 2:5. This can be ac-
complished by reducing the Kondo temperature of the
DQD (TK). Importantly, the KS ! AF transition manifests
differently for each case: in serial cases, the splitting (�)
provides an upper bound on J. For parallel cases, � is
 2002 The American Physical Society 136802-1



FIG. 3. Parallel DQD’s with J � 25� 10�4. (a) dI=dVdc for
different �J=TK�< �J=TK�c ’ 2:5. The dI=dVdc curves show a
ZBA with G0 � 4e2=h. The width of the ZBA decreases as TK
decreases, namely, as the ratio �J=TK� increases. At �J=TK� �
�J=TK�c the ZBA splits. (b) dI=dVdc for different �J=TK� >
�J=TK�c ’ 2:5. The splitting is always � � 2J allowing one to
measure J experimentally. Inset: Abrupt change of the DOS at
the transition.
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FIG. 2. Serial DQDs with tC � 0:5 and J � 25� 10�4. (a) I-V
characteristics for different �0’s corresponding to T0

K � 1:4�
10�3; 1:2� 10�3; 1:0� 10�3; 8:6� 10�4; 7:4� 10�4; 6:3�
10�4. (b) Nonlinear differential conductance G 
 dI=dVdc for
the same values. At �J=TK� & �J=TK�c ’ 2:5 the ZBA splits.
(c) Dependence of �J=T0

K�c on tC (dotted line). The line
�J=TK�c � 2:5 (solid) is also shown.
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always 2J� 5�TK�c (Fig. 4). This would allow one to
extract J experimentally from G (Fig. 3).

Serial DQD’s (Model I).—DQD’s in series are modeled
by using a (N � 2) fold-degenerate two-impurity
Anderson model with an extra interdot tunneling term.
Each QD is attached to a different electron reservoir with
chemical potentials �L and �R, respectively. We assume
that U is sufficiently large so that (i) double occupancy on
each QD is forbidden, but (ii) there is an effective AF spin
136802-2
coupling due to virtual double occupancy, namely, J ~SS1 �
~SS2, where ~SS1;2 are the usual SU�N� spin operators and J �
4t2C=U > 0 [8,13]. The total Hamiltonian is then H I �

H SB
I �H AF, where condition (i) allows us to use an

auxiliary slave-boson (SB) representation [16]:
H SB
I �

X
k�2fL;Rg�

�k�c
y
k��
ck�� �

X
i2f1;2g;�

�i�f
y
i�fi� �

tC
N

X
�

�fy1�b1b
y
2f2� � fy2�b2b

y
1f1��

�
VL����
N

p
X
kL�

�cykL�b
y
1f1� � fy1�b1ckL�� � �L! R; 1 ! 2� �

X
i2f1;2g

�i

�X
�

fyi�fi� � byi bi � 1

�
: (1)
Condition (ii) gives H AF �
J
N

P
�;�0 fy1�f1�0fy2�0f2�. In

Eq. (1), cyk�;��ck�;�� are the creation (annihilation) opera-
tors for electrons in the reservoir �. In the SB representa-
tion, the annihilation operator di� (i 2 1; 2) for electrons in
each dot is decomposed into the SB operator byi which
creates an empty state and a pseudofermion operator fi�
which annihilates the singly occupied state with spin �:
di� ! byi fi� (dyi� ! fyi�bi). This replacement is exact
provided that Q̂Qi �

P
� f

y
i�fi� � byi bi � 1 is fulfilled in

each dot. The two constraints are enforced in (1) by two
Lagrange multipliers �i.

Parallel DQD’s (Model II).—Parallel dots can be fabri-
cated to have both electrostatic and interdot tunnel cou-
plings [17]. We choose to treat the cleanest case where the
interdot tunneling is negligible [18]. Thus, the exchange J
comes only from a strong electrostatic interdot coupling.
This way, parallel DQD’s can be described with the model
Hamiltonian H II � H SB

II �H AF, where H SB
II can be

obtained from H SB
I by coupling each dot to two leads

and by eliminating the interdot tunneling term.
Our analysis of H I and H II is based on two mean field

(MF) approximations. First, we use the so-called slave-
boson mean field theory (SBMFT) [8,10,13,14,16], which
consists of the replacement bi�t�=

����
N

p
! hbii=

����
N

p
� ~bbi.

The neglect of fluctuations around hbi�t�i is exact in the
136802-2
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limit N ! 1, and corresponds to O�1� in a 1=N expansion.
At T � 0, it correctly describes spin fluctuations (Kondo
regime). Second, the AF interaction is decoupled by in-
troducing a valence bond operator  12 
 � J

N

P
� f

y
1�f2�.

At large N we may ignore its fluctuations ( 12 ! �  12 �
h 12i) such that H AF !

P
� f

y
2�f1� �  � �  �

P
� f

y
1�f2� �

N
J jj �  jj

2, where �  
 �  12 � �  �
21 [19]. By making these two
FIG. 4. Phase diagram � vs 1=TK. At �1=TK�c, � jumps from
zero to 2J� 5�TK�c. The line 1=TK 
 �1=TK�c separates the
Kondo and antiferromagnetic phases.
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MF approximations, we render the Hamiltonian quadratic
in the fermion operators. The problem, though quadratic, is
far from being trivial for ~bb1, ~bb2, �1, �2, �  , and �  � and
depend self-consistently on fermionic nonequilibrium
Green’s functions (NGF’s). Following Ref. [14], we
obtain nonlinear self-consistent equations relating the
MF parameters with the NGF’s. For model I they
read
~VVL�R�

X
kL�R�;�

hcykL�R���t�f1�2���t�i � ~ttC
X
�

hfy2�1���t�f1�2���t�i � �1�2�
~bb21�2� � 0; (2a)

~bb21�2� �
1

N

X
�

hfy1�2���t�f1�2���t�i �
1

N
; (2b)

�  � �
J
N

X
�

hfy1�f2�i: (2c)
where ~VVL�R� � VL�R�~bb
2
1�2� and ~ttC � tC~bb1~bb2: namely, the

original couplings are strongly renormalized by Kondo
correlations (i.e., by the MF bosons). The NGF’s (i; j 2
1; 2), G<

i;j��t� t0� � �ihfyi��t
0�fj��t�i, G<

1�2�;kL�R��
�t�

t0� � �ihcykL�R���t
0�f1�2���t�i, are obtained by applying the

analytic continuation rules of Ref. [20] to the equation of
motion of the time-ordered GF’s along a complex contour
(Keldysh, Kadanoff-Baym, etc.). This allows us to close
the set of Eqs. (2). In equilibrium they reduce to Eq. (4) in
Ref. [8]. Model II is solved similarly. The current is
obtained from the NGF’s [21].

Results.—To simplify, we consider henceforth that VL �
VR � V0 and �1� � �2� � �0. All energies are given in
units of ���� � #

P
k� jV0j

2$��� �k�� 
 ���F� for �D �
� � D (D is the half-bandwidth and serves as a high
energy cutoff). Previous studies [8,13] of the linear trans-
port properties through DQD’s in series have already
yielded information about the KS ! AF transition. By
comparing their ground state energies [13] �GSK � �GSAF �
J=4� 2TK=#, the transition can be estimated to appear at
�J=TK�c � 8=# ’ 2:5. Using TK � T0

Ke
�tC , with � �

tan�1�tC� [8,13], we get �J=T0
K�c � 2:5e�tC [Fig. 2(c)].

Figure 2 shows that the KS ! AF transition [12] can be
directly measured in the G 
 dI=dVdc curves [Fig. 2(b)] of
serial DQD’s with tC < 1 (for tC > 1, J plays little role
[13]). For �J=TK�< �J=TK�c, G has a zero-bias anomaly
(ZBA), reflecting Kondo physics. Upon making �0 more
negative, namely, increasing the ratio �J=TK� by reducing
T0
K at fixed J, the singlet formation quenches the Kondo

effect, and the ZBA smoothly splits to two peaks at finite
Vdc [10,12,13]. The singlet and the Kondo state coexist in a
coherent fashion when �J=TK� � �J=TK�c (thick solid line)
and G0 
 dI=dVdcjVdc�0 � 2e2=h (unitary limit) [8,13].
Importantly, the splitting appears before the AF singlet
completely develops, �J=TK� & �J=TK�c [note that the
previous estimation of �J=TK�c ’ 2:5 from �GSK � �GSAF as-
sumes a complete singlet formation, namely, jj �  jj � J=2];
this can be attributed to the small interdot tunneling con-
tribution to � � 4�jj �  jj � ~ttC�. This prevents us from ex-
tracting the value of jj �  jj from �. Nonetheless, the fact that
the ZBA splits for tC < 1 [14] is a clear indication that
jj �  jj � 0. When �J=TK� � �J=TK�c the singlet is com-
pletely formed, jj �  jj � J=2 [10]. Since J & �=2, the split-
ting of the nonlinear conductance provides an upper bound
on J. Experimentally, observation of splitting in G, at a
small tC, as T0

K is reduced would provide a ‘‘smoking gun’’
for spin-singlet formation. The reverse process, an increase
of T0

K (at fixed tC), should change the split G into a ZBA.
In parallel DQD’s [Fig. 1(b)] the AF interaction is due to

electrostatic coupling rather than tunneling, thereby
greatly simplifying the interpretation of the results. This
is shown in Fig. 3. For �J=TK�< �J=TK�c [Fig. 3(a)], G
exhibits a ZBAwith G0 � 4e2=h (each dot acts as a unitary
Kondo channel). As expected, the width of the ZBA de-
creases as the ratio �J=TK� grows upon reducing TK. When
�J=TK� � �J=TK�c (thick solid line), the dI=dV changes
abruptly signaling the Kondo to AF state transition: G0

drops sharply [22] while the maximum G appears at finite
voltages for which Vdc � J, namely, � � 2J. Importantly,
further decrease of TK, namely, increase of the ratio
�J=TK�, does not change � [Fig. 3(b)], allowing one to
136802-3
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measure J experimentally. We mention in passing that to
access ways of measuring J is of great importance for QIP
applications [7]. Also, the robustness of the splitting allows
one to anticipate that for T � 0, G0 vs T would have a
nonmonotonic behavior with a maximum around T � J
[23]. The underlying physical picture can be understood in
terms of the density of states (DOS) (Fig. 3, inset),
whereby there is a Kondo state (peak at ! � 0) for
�J=TK�< �J=TK�c. For �J=TK� � �J=TK�c, two narrow
peaks abruptly form at! � �J=2 indicating the formation
of a spin singlet. This scenario does not change so long as
�J=TK� > �J=TK�c. This has to be compared with the
smooth appearance of the splitting in Fig. 2(b). Our results
can be interpreted as follows: unlike in serial DQD’s, the
order parameter characterizing the transition to the AF
state can be directly extracted from G (using � �
4jj �  jj). This way, we propose a phase diagram � vs
1=TK which unambiguously signals the transition: using
�J=TK�c � 2:5 together with � � 2J we conclude that �
exhibits, upon reducing TK, a first order jump. The jump
occurs at 1=�TK�c (which is J dependent) and goes from
zero to 2J� 5�TK�c (Fig. 4). Observation of this feature in
the proposed phase diagram would constitute direct evi-
dence of the KS to AF singlet transition in parallel DQD’s.

In closing we have demonstrated that the transport
through DQD’s directly reflects the physics of the two-
impurity Kondo problem. We give a series of experimental
predictions that: (i) unambiguously signal the KS ! AF
transition, and (ii) show how to measure the exchange
constant J between the spins of the dots. As the relevant
physics occurs at energy scales of the order of TK we
believe that our predictions could be tested experimentally.
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