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Some Generic Aspects of Bosonic Excitations in Disordered Systems
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We consider noninteracting bosonic excitations in disordered systems, emphasizing generic features
of quadratic Hamiltonians in the absence of Goldstone modes. We discuss relationships between such
Hamiltonians and the symmetry classes established for fermionic systems. We examine the density
��!� of excitation frequencies !, showing how the universal behavior ��!� �!4 for small ! can be
obtained both from general arguments and by detailed calculations for one-dimensional models.
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bosonic and fermionic excitations, which prevent an ele-
mentary transcription of established ideas. Most impor-

the distribution of Hamiltonian matrix elements. By con-
trast, for the bosonic systems we discuss, we show that
An understanding of universal properties of excitations
in disordered systems occupies a central place in con-
densed matter physics. Much of the work in this area
has focused on systems of noninteracting fermions, as
models for quasiparticles in disordered conductors or
superconductors with interactions treated at the mean-
field level. Classification of such systems according to
symmetry provides an important starting point, and in
many instances the possibilities are the three represented
by the Wigner-Dyson random matrix ensembles [1]. A
recent development, however, has been the recognition
that there exist symmetry classes additional to those of
the Wigner-Dyson ensembles. These additional symmetry
classes arise in fermionic systems which have either
chiral symmetry, as for tight-binding models on bipartite
lattices with only off-diagonal disorder [2], or particle-
hole symmetry, as for the Bogoliubov–de Gennes
Hamiltonian in disordered superconductors [3]. A char-
acteristic feature of both cases is that eigenstates at posi-
tive and negative energies are related in pairs and zero
energy emerges as a special point in the spectrum.

It is natural to anticipate that similar mathematical
structure may be important for the theory of noninteract-
ing bosonic excitations or classical harmonic modes in
disordered systems. Our aim in the following is to exam-
ine how far this is the case and what consequences it has.
Studies of systems of this type have a long history, with
celebrated early work by Dyson [4] on the dynamics of a
disordered chain of masses and springs, and applications
which include phonons in disordered solids [5] and spin
waves in random magnets [6]. An obvious parallel be-
tween excitations in these systems and those in fermionic
systems belonging to the one of the additional symmetry
classes is that bosonic excitations arise in positive and
negative frequency pairs, and zero is a special point in the
frequency spectrum. A second, more formal parallel
is that random magnets, for example, in common with
superconductors, may give rise to quadratic Hamiltonians
containing terms that annihilate and create particle pairs.
There are also clear differences between systems with
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tantly, while the exclusion principle guarantees that a
fermionic system with a quadratic Hamiltonian has a
ground state, for a corresponding bosonic system con-
straints must be imposed to ensure that it is stable. As a
consequence, even to construct a phenomenological treat-
ment such as random matrix theory for bosonic excita-
tions, it is necessary to keep in mind their origins in an
appropriate nonlinear problem. In turn, a distinction
arises that is specific to bosonic excitations, between
those which are Goldstone modes and those which are
not. We focus below on the latter and discuss elsewhere
systems with continuous symmetry [7].

Any quadratic bosonic Hamiltonian can be written in
the forms

H �
XN
i;j�1

�Mijpipj � Kijxixj � Cij�xipj � pjxi��

�
X2N
i;j�1

H ij
i
j �
1

2
�ay a�

�
� �
�y �T

��
a
ay

�
: (1)

Here xi and pi are the coordinates and momenta of the
oscillators, 
i � pi, 
N�i � xi with 1 
 i 
 N, and the
vectors ay, a have as entries bosonic creation and anni-
hilation operators ayi ; ai � �xi � ipi�=

���
2

p
. The matrix H

is real symmetric, � is Hermitian, and � is symmetric.
The condition for time-reversal invariance is that C � 0
or, equivalently, that � and � are real.

We are concerned with spectral properties of models of
this kind which are generic when H is random. One
anticipates that these will be found at small excitation
frequencies !i, and we concentrate particularly on their
average density ��!� � N
1h

P
��!
!i�i at small !.

Indeed, the final expression of Eq. (1) illustrates the
parallel between bosonic models and the Bogoliubov–
de Gennes Hamiltonian, from which universal behavior
has been derived for the density of quasiparticle states in
disordered, gapless superconductors [3]. In fermionic sys-
tems such behavior arises essentially from the interplay of
disorder and symmetry, and does not depend on details of
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the requirements of stability impose features on the dis-
tribution of H which determine the form of ��!� at
small !.

A simple argument leading to this conclusion has been
given previously [8–10]. In outline it is as follows. Recall
that the Hamiltonian of Eq. (1) is characterized not only
by the oscillator frequencies !i but also by the eigenval-
ues �n of the matrix H , which we refer to as oscillator
stiffnesses; let d��� � �2N�
1h

P
���
 �n�i be their aver-

age density. From a discussion of the curvature distribu-
tion at absolute minima of random functions of one
variable, it is suggested [8] that d��� / �3=2 for small �.
Then, using the relation !2

i � �1�2 which holds in a
single-mode system, one arrives at ��!� / d�!2�! /
!4 for small!. Aweakness at both steps in this argument
is that 1 degree of freedom is treated in isolation. We show
here how the same behavior emerges without such a
restriction.

In a stable system, stiffnesses are positive and frequen-
cies are real. It is helpful to introduce a description that
guarantees this property. To this end, write H as a square
of a real matrix Q, in the form H � QTQ (possible
provided all En � 0). Also, note that frequencies are
the eigenvalues of an auxiliary matrix H 0 � �2H ,
where �2 � �y � IN , �y is the usual Pauli matrix, and
IN is theN � N identity matrix [11]. Since the eigenvalues
of �2QTQ coincide with those of � � Q�2QT , which is
Hermitian and antisymmetric, frequencies are real and
occur in pairs �!i. While there is in general no simple
relation between stiffnesses and frequencies, several spe-
cial cases represent important exceptions. If [in Eq. (1)]
M � IN and C � 0 (as for vibrational problems with all
masses equal), then !i � �

�����
�i

p
, where the nontrivial

stiffnesses appearing here are the eigenvalues of K;
whereas if M � K and C � 0 (as for a random-bond
ferromagnet), then !i � ��i.

Moving beyond these special cases, a straightforward
approach to multimode problems comes from concentrat-
ing on disorder realizations in which one stiffness, say,
�1, is much smaller than all others. The probability den-
sity for such disorder realizations varies as �3=2

1 , by the
arguments of Ref. [8]. In the limiting case �1 � 0, two
eigenvalues of � vanish [since det�H � � det���, and
since the eigenvalues of � are paired], while for 0<
�1 � �n, n � 1, perturbation theory yields a pair of
excitation frequencies !i / �

������
�1

p
. As a result, ��!� /

!4 for !� !p, where !p is the lowest excitation fre-
quency in a typical sample. More generally, consider a
macroscopic system in which low frequency modes are
localized with a localization length which remains finite
as !! 0. Treating each localization volume independ-
ently, we obtain ��!� / !4 for !� !p, where !p is in
this case the lowest excitation frequency in a typical
localization volume.

Turning to detailed calculations, it is useful to con-
struct a formulation in which Q appears linearly by
considering the enlarged matrices
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~HH �

�
0 Q
QT 0

�
and ~HH 0 �

�
0 Q

�2QT 0

�
: (2)

Clearly, the eigenvalues of H and H 0 are squares of
those of ~HH and ~HH 0, respectively. The 2� 2 structure of
~HH displayed in Eq. (2) is interesting partly because it is

the defining feature of the chiral symmetry classes,
studied previously in a variety of contexts [2,12–16],
while matrices with the structure of ~HH 0 constitute a
new, chiral bosonic problem. Whereas much past work
on chiral symmetry classes has taken the elements ofQ to
be independent random variables, drawn from a given
distribution, it is clear following our introductory dis-
cussion that a central concern in our case is to determine
the distribution of H and hence (up to left multiplication
by an orthogonal matrix) that of Q. It does not seem
obvious in advance whether Q can be chosen with a
simple form (for example, with only short-range cou-
plings) for any given problem. In fact, we have found
convenient, explicit expressions for Q in several one-
dimensional examples [7]. In addition, the approach
proves useful even for problems in which Q is known
only implicitly, as we now show.

We consider the random field XY model, which has
been studied extensively as a description of pinned charge
density waves [17]. It has the Hamiltonian

H �
Z L

0

�
1

2

2 �

1

2
�@x �

2 � h� ; x�
�
dx; (3)

where 
 is the momentum conjugate to the angle  ,
h� ; x� � h�x� cos� �x� 
 "�x��, and h�x� and "�x� are
the random amplitude and phase of an applied field,
with h h� ; x� i � 0 and h h� ; x�h� 0; x0� i � ��x

x0�h0 cos� 
 0�. This continuum problem has, in the
discrete notation used above, M � IN , C � 0, and hence
! � �

�����
�i

p
. We are therefore concerned only with K: for

the sake of an obvious analogy, we refer to it as a
Hamiltonian, denoting it by H and its eigenvalues by
E in place of �.

Stationary configurations of the field  satisfy


 @2x � @ h� ; x� � 0; (4)

while amplitudes  of normal mode excitations about the
ground-state  0, with frequency ! � �

����
E

p
, obey

H � 
@2x � @2 h� 0; x� � E : (5)

We want to find the density of states for the Hamiltonian
of Eq. (5). In this form, this problem has been the subject
of many publications [17–19]. Summarizing what is
known, a characteristic energy scale, the pinning energy
[20] Ep, separates two regimes. For E� Ep the density
of states is only weakly affected by the random field and
can be computed perturbatively in the field strength. For
E� Ep the density of states is strongly influenced by
disorder and believed to vary with E as a power law,
d�E� / E$, but the value of $ remains controversial
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[9,10,17]. Here we show, in argeement with arguments
due to Aleiner and Ruzin [9] and to Fogler [10], that
$ � 3=2.

Since Eq. (5) has the form of a Schrödinger equation
with a random potential @2 h� 0; x�, it is tempting to
anticipate behavior familiar from simple choices of po-
tential distribution, such as Gaussian white noise. That
would be too naive, however, because —as for any bo-
sonic Hamiltonian—the spectrum of H is positive and
so the potential cannot be arbitrarily random. To inves-
tigate the implications of this fact, it is useful to follow
Feigelman [18], introducing the notion of a partial en-
ergy, E� ; y�: the ground-state energy of the half-chain
with coordinate values 0 
 x 
 y and boundary condi-
tion  �y� �  . Interpreting Eq. (4) as an equation of
motion for a system with space coordinate  and time
coordinate x, E� ; y� plays the role of an action and
satisfies the Hamilton-Jacobi equation

@xE �
1

2
�@ E�

2 � h� ; x�; (6)

while the classical trajectory  0�x� obeys d 0=dx �
@ E. Now define V�x� � @2 E� 0�x�; x�, which we call
the chiral potential. As a direct consequence of Eq. (6)
it satisfies

d
dx
V � V2 � @2 h� 0�x�; x�: (7)

The Hamiltonian of Eq. (5) can therefore be rewritten as
H � QTQ, where

Q � 

d
dx

� V�x�: (8)

Thus the bosonic problem of Eq. (5) is equivalent to a one-
dimensional chiral problem specified by Eqs. (2) and (8),
in which V�x� should be determined along with  0�x�.

At this point we can draw on the work of Comtet et al.
[13], in which one-dimensional chiral problems of this
kind have been analyzed in detail. In particular, they
show that if the chiral potential V�x� has a positive
average hV�x� i � E1=2

p (sometimes referred to as stagger-
ing [16]), then the low-lying (E� Ep) states of Eq. (2)
are localized with a localization length 
� E
1=2

p . In this
regime, the integrated density of states N�E� �R
E
0 d�E

0�dE0 can be calculated as the probability of a
negative fluctuation of V�x� in the interval x1 < x< x2
for which 2

R
x2
x1
dxV�x� � 2U < log�E�. The probability

for a rare event of this kind is expected under many
circumstances to vary with E as exp�' log�E�� � E',
but the value of ' depends on the details of the distribu-
tion of V�x�. In the following, we establish the equiva-
lence implied by our notation, between hV�x� i2 and
pinning energy, and calculate the low-lying density of
states for the random field XY model by studying rare
negative fluctuations of the particular chiral potential that
arises in this context.
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To appreciate why hV�x� i > 0, consider the ground
state of the half-chain as a function of the boundary
condition,  : it varies smoothly except for jumps at a
small number of isolated points within one period. At
these points E� ; y� is continuous but has an upward cusp
[10]; since E� ; y� is periodic, an average of V�x� � @2 E
computed excluding these cusps (as on  0) is naturally
positive, and its size can be estimated from the average
sum of discontinuities in @ E. Alternatively, one can
attempt a more detailed analysis of Eq. (6), which
is similar to the Kardar-Parisi-Zhang equation [21], but
with two differences. One, the absence of a diffusion term
D@2xE, is unimportant since it is well known that
the limit D! 0 in the KPZ equation yields solutions
which are the global minimum of Eq. (3). The second,
involving the nature of noise correlations, is more signifi-
cant: while studies of the KPZ equation deal with noise
that is uncorrelated in both x and  , we are concerned
with noise that has long-range correlations in  . This
situation is familiar in the context of Burgers turbulence
[22], and indeed, introducing u � @ E one finds the
Burgers equation ux � uu � @ h. Cusps in E� ; y� as
a function of  correspond to the shock waves of Burgers
turbulence, and using dimensional analysis the depend-
ence on noise strength hV�x� i � h1=30 can be obtained
from Eq. (6), as in the standard picture of the pinning
energy.

Turning to fluctuations in V�x�, a direct attack, via a
solution of Eq. (6), is not appropriate since many aspects
of Burgers turbulence remain controversial. Instead, we
treat Eq. (7) as a Langevin equation for V�x� with
@2 h� 0�x�; x� playing the role of a random force. If
 0�x� is determined by minimizing Eq. (3) for fixed
 �0� and  �L�, the resulting random force has built-in
correlations which ensure that V�x� remains bounded.
Alternatively, one may solve Eq. (4) for  �x� with fixed
initial conditions,  �0� and @x �0�. In this case, the
random force is uncorrelated and appropriate values for
@x �0� generate ground states corresponding to different
choices of  �L�. Other values of @x �0�, however, corre-
spond to maxima of Eq. (3), and still others to higher
energy local minima. From the perspective of the
Langevin equation, a maximum of Eq. (3) is signalled
by escape of V�x� towards large negative values. Those
noise realizations that result in escape should be elimi-
nated by supplementing Eq. (7) with an absorbing bound-
ary condition at V�x� � 
1. The trajectories of V�x� that
are not absorbed should be weighted in two ways. First,
we must eliminate solutions to Eq. (4) which are only
local minima of Eq. (3). They are separated from the
absolute minimum by maxima and hence have neighbor-
ing trajectories on which V�x� escapes. The necessary
weight is therefore the probability that no near neighbors
of a given trajectory are absorbed. Second, we weight
trajectories representing the absolute minimum for
different @x �0� in such a way as to give a uniform
density on  �L�.
136801-3
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FIG. 1. The integrated density of stiffnesses, compared with
the theoretically predicted powers, $� 1 � 5=2 for E� Ep
and $� 1 � 1=2 for E� Ep.
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Omitting in the first instance both these weights, the
form of the probability distribution P�U� at large negative
U can be found by passing from the Langevin equation to
a path integral, fixing U with a Lagrange multiplier, and
calculating the lowest eigenvalue of the corresponding
Fokker-Planck operator, which is nonzero because of the
absorbing boundary condition. In this way we obtain
P�U� � e2U as U ! 
1. To calculate the weighting fac-
tors, we consider a family of trajectories parametrized by
s, with coordinate  �x� � .�s; x� and chiral potential
V�x� �W�s; x�, where .�s; x� and W�s; x� are assumed
small. Deriving linearized evolution equations by ex-
panding Eqs. (4) and (7), and solving these, we find
.�s; x2� � eU.�s; x1� and W�s; x2� � e
2UF�s�, where

F�s� � W�s; x1�

� .�s; x1�
Z x2

x1

exp

�
3
Z x

x1

V�y�dy
�
@3 h� ; x�dx:

(9)

In order that no trajectories neighboring  �x� are ab-
sorbed, we require W�s; x2� * 
1 for all s and hence,
at large negative U, F�s� * 
e2U, which occurs with
probability eU. Of the surviving trajectories, we should
retain only those that have a fluctuation in the integrated
chiral potential similar to U. These satisfy the condi-
tion W�s; x2� & 1, and hence F�s� & e2U, implying
j.�s; x1�j & eU and j.�s; x2�j & e2U, thus generating a
weight e2U. Combining these factors, the probability den-
sity that U is large and negative on  0�x� varies as e5U,
yielding N�E� � E5=2, and hence ��!� �!4, as antici-
pated above. A detailed account of these arguments will
be presented elsewhere [7].

The mapping described here of Eq. (3) into a chiral
problem also goes through for a discrete version of the
XY spin chain. Figure 1 shows the result of a computation
of N�E� for a XY spin chain of 106 sites, with
Hamiltonian H �

P
ifhi� i� 
 cos� i 
 i
1�g, where

hi� � � Ai cos� 
 "i�, and �A cos�"�; A sin�"�� is uni-
formly distributed on a disc of radius 0:01. Results are
consistent with the power laws expected for both E� Ep
and E� Ep.

We note finally that, while the random field XY chain
represents a special case in the sense noted above, since
frequencies and stiffnesses are simply related, we expect
the same form more generally for ��!�, as implied by the
discussion preceding Eq. (2). Calculations for the random
field Heisenberg spin chain lead to two-channel chiral
problems involving ~HH and ~HH 0. For such problems we
obtain [7] d��� � �3=2 and ��!� �!4.

The experimental situation is not clear-cut. Frequency
dependent conductivity measurements on pinned charge
density waves, summarized by Fogler [10], do not provide
evidence for ��!� / !4, perhaps because they are re-
stricted to relatively high temperatures. By contrast,
such an excitation spectrum, superimposed on a phonon
136801-4
background, is deduced from specific-heat and neutron-
scattering data for glasses [23].
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