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Highly Extended Image States around Nanotubes
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We predict that freely suspended, linear molecular conductors or dielectrics, such as carbon nano-
tubes, can support electronic states that are localized far from the surface. These ‘‘tubular image
states’’ are formed in extended potential wells resulting from the tug of war between the external
electron’s attraction to its image charge in the nanotube, and its repulsion from the tube due to its
transverse angular momentum. The displacement of these states ( > 10 nm) away from the surface
prevents their wave functions from collapsing, resulting in long lifetimes at low temperatures. We
predict that tubular image states with binding energies of 1–10 meV can be formed via radiative
recombination.
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FIG. 1 (color online). A visualization is shown of an electron
in a tubular image state (TIS) around a �10; 10� metallic carbon
nanotube. States having large radii ( > 10 nm) are formed in
the interaction potential of Eq. (6). Similar states should exist
spatially extended ‘‘tubular image states’’ that form
around the surfaces of freely suspended linear molecular

around any metallic or semiconducting nanotube, including
multiwalled or ring-shaped nanotubes.
Atomic and molecular Rydberg states are long-lived
electronic states, weakly bound to a distant central attrac-
tor [1]. Recent advances in the laser and magnetic cooling
of atoms and molecules have enabled their exploration in
new, unusual settings. For example, large numbers of
Rydberg atoms have been reported in an expanding ultra-
cold neutral plasma, where their large electric dipole
moments can freeze the atoms into a correlated gas [2].
Long-lived Rydberg molecules have now been detected
[3]. Even more exotic Rydberg molecules, with large
internuclear separations and dipole moments, have been
predicted to exist in ultracold environments [4].

Spatially extended electronic states can also be formed
near the surfaces of conductors or dielectrics [5–8]. They
occur when an external electron polarizes a surface and
becomes attracted to its ‘‘image charge’’ residing below
the surface. The resulting interaction potential for an
electron at a distance z above a flat surface, with dielectric
constant �, is Coulomb-like: V�z� � � e2

4z �
��1
��1� [5].

Because of its 1=z form, this potential supports an infinite
number of ‘‘image states’’ having a familiar Rydberg-
series form, En � � 13:60

16n2
���1
��1�

2 eV, where n is the princi-
pal quantum number.

As an example, Höfer et al. [9] have used two-photon
photoemission to populate coherent wave packets of im-
age states above a Cu(100) surface. The observed states
had n� 7, binding energies of 15–40 meV, and lifetimes
of a few picoseconds, which were limited by the rapid
collapse of the states into the Cu(100) surface. Image
states with higher n have longer lifetimes 
n � n3 [10],
but weaker binding energies, since the latter scale as 1=n2.
Similar experiments performed above molecular wires
laid on surfaces [11], nanoparticles [12,13], and one- and
two-dimensional liquid He [14] demonstrate that ex-
tended image states are common in nanoscopic systems.

In this work, we predict the existence of a class of
0031-9007=02=89(13)=135506(4)$20.00
conductors or dielectrics, and, in particular, around me-
tallic nanotubes (see Fig. 1) [15,16]. While the physical
principles governing the existence of these states are
analogous to the usual image states, these tubular image
states can be prepared with nonzero angular momentum,
l. The resulting centrifugal barrier keeps the electronic
wave functions away from the surface of the tube, thereby
reducing the rate of collapse of the image states into the
surface and increasing their lifetimes.

To describe a tubular image state (TIS), we begin by
deriving the interaction potential V��0� between a nano-
tube of radius a and an electron at a distance �0 from its
axis. At the large distances relevant here (�0=a� 1),
nanotubes can simply be characterized by a frequency de-
pendent dielectric tensor "�!� [17]. Ab initio calculations
 2002 The American Physical Society 135506-1
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FIG. 2 (color online). The effective potential Veff��� between
an electron and a conducting nanotube is shown for a number of
angular momenta l. Extremely long-range minima are seen,
which support a series of bound TISs. The inset shows a blowup
of the potentials near the nanotube (� 	 0:5–2:5 nm), where
large (1–2 eV) potential barriers exist.
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show [18] that metallic nanotubes can be described, in
first approximation, as perfectly conducting, infinitely
long, cylinders (for which " 	 1); the modifications
required to treat dielectric nanotubes will be sketched
below. In either case, the image potential for the cylin-
drical geometry is significantly more complicated than
that of the planar and spherical configurations.

When a charge q approaches a metallic nanotube, it
polarizes the tube, inducing a scalar potential 
ind. The
total scalar potential 
tot � 
0 �
ind is the sum of the
potential due to the external charge 
0, and the induced
potential 
ind. By requiring that 
tot vanishes on the
tube’s surface, the induced potential is found to be [19],


ind��;’; z� � �
2q
�

Xm��1

m��1

Z 1

0
dk cos�kz� exp�im��

�
Im�ka�
Km�ka�

Km�k�0�Km�k��; (1)

where the electron is located outside the tube at the
position ��0; 0; 0�, and �Im�x�; Km�x�� are the regular and
irregular modified Bessel functions.

The interaction potential (energy) is defined as

V��0� �
1

2
q
ind��0; 0; 0� ; (2)

where the factor of 1=2 eliminates double counting of the
energy [20]. The potential’s long-range behavior emerges
most transparently when the electrostatic force between
the charge and the conducting cylinder is calculated by
differentiating Eq. (1) with respect to �:

F��0� � �q@
ind=@�j��0;0;0�

�
2q2

�a2

Z 1

0
dx

"
A0�x� � 2

X1
m�1

Am�x�

#
;

Am�x� �
Im�x�
Km�x�

Km�x�0=a� xK
0
m�x�0=a�:

(3)

Asymptotic analysis shows that, at large distances
(�0=a� 1), the induced force F��0�, Eq. (3), is domi-
nated by the m � 0 term. Then, the long-range potential
V��0� � �

R
�0 F��� d� calculated from Eq. (3) with the

m � 0 term takes on the simple form

V��0� �
q2

a
li

�
a
�0

�
	 �

q2

a
1

��0=a� ln��0=a�
; (4)

where li�x� �
R
x
0 dt= ln�t� is the logarithmic integral [21].

Equation (4) agrees with the expectation, based on
geometrical grounds [20], that at large distances the result
for the conducting cylinder should lie somewhere between
that of a conducting plane (V ��1=z) and a conducting
sphere (V ��1=r2, where r is the radial distance).

Motivated by the long-range form of the potential,
Eq. (4), we construct the following approximate poten-
tial,
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V��0� 	
2

�
q2

a

X
n�1;3;5;...

li��a=�0�
n�; (5)

by modifying, ad hoc, the long-range force F��0� to have
the correct behavior near the surface of the nanotube,
where F��0� � 1=j�0 � aj2. Thus, while only approxi-
mate, Eq. (5) has the correct limiting behavior close to
the nanotube (�0=a� 1) as well as far from it [22].
Moreover, it reproduces the exact result [obtained by
numerically integrating Eqs. (1) and (2)] to within a
few percent for the values of ��0=a� relevant in this work.

The above results, valid for a metallic cylinder (" 	
1), can be extended to a cylinder with a finite anisotropic
dielectric tensor "ij. If we assume a uniform tube, the
tensor can be diagonalized to yield three components: one
along the tube axis ("zz) and two ("xx; "yy) perpendicular
to it. Because of the nonconductance of single or multi-
walled nanotubes in the transverse direction, "xx � "yy is
typically small even when "zz is large. Including a finite
anisotropic dielectric function in the above derivation
shows that the leading correction to the interaction po-
tential V��0� of Eqs. (1) and (2) scales as 1=

�������������
"zz"xx

p
. Thus,

as long as the dielectric function is large along the tube,
that is "zz"xx � 1, the interaction potential is practically
identical to the perfectly conducting case.

The effective interaction potential Veff��� is formed by
combining the attractive induced potential, Eq. (5), and
the repulsive centrifugal potential:

Veff��� � V��� �
�l2 � 1

4�

2#�2 ; (6)

where # is the reduced mass of the charged particle.
Figure 2 shows the effective potential Veff��� for an
135506-2
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electron (# � me � q � 1 in atomic units) in front of a
(10,10) metallic carbon nanotube of radius a � 0:68 nm.
For moderate angular momenta (l * 6), the effective
potential possesses extremely long-range wells that sup-
port bound TISs. The inset of Fig. 2 shows that high
(1–2 eV) potential barriers separate these wells from the
tube surface.

The electronic motion in the vicinity of a nanotube can
be localized in the longitudinal z direction by external
electrodes, structures, or defects (with different dielectric
properties) that are formed inside the tube or on its sur-
face. Such inhomogeneities can also localize electrons
inside quantum dots having lengths of a few hundred
nanometers, a phenomenon observed recently in carbon
nanotubes [23].

The total electronic wave function is written in a
separable form as �n;l;k��;’; z� �  n;l��� e

i l ’�k�z�=����������
2��

p
, so that the motion along the tube (ẑz) separates

out and the total energy becomes En;l;k � En;l � Ek. In
this paper we focus primarily on the transverse energy
En;l and wave function  n;l���, which satisfy the
Schrödinger equation�

d2

d�2 � 2#�En;l � Veff����
�
 nl��� � 0: (7)

The longitudinal energy Ek is either continuous (Ek �
k2=2) or quantized depending on whether the electron is
localized in the ẑz direction or not.

Figure 3 shows the n � 1 transverse wave functions
 n�1;l��� for the potentials of Fig. 2. They show that, even
for moderate angular momenta l, the electron is kept a
substantial distance (10–50 nm) away from the nano-
tube’s surface, with �max, the distance of maximum
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FIG. 3 (color online). The n � 1 wave functions  n�1;l��� are
shown for the effective potentials Veff��� of Fig. 2. The wave
functions have maxima, whose distances from the tube surface
scale as �max � l3.
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probability, scaling as �max � l3. The associated binding
energies En;l are presented in Fig. 4. The long-range form
of the interaction potential, Eq. (4), gives rise to an n- and
l-dependent series of energy levels (1–10 meV), which
scale as En;l � l�3 for fixed n.

We now briefly discuss the decay mechanisms of the
TISs. For general image states, the most important decay
channel is the collapse of the external electron into the
bulk, which is controlled by the overlap of the image
wave functions with the surface states [7,9]. For TISs
with moderate angular momenta this decay is suppressed
by the centrifugal barrier. For a barrier of height h�
1–2 eV and width w 	 0:5–2 nm (see inset in Fig. 2), the
tunneling lifetimes can be estimated as 
 	 2w=v jTj2,
where jTj2 designates the transmission coefficient, jTj2 �
exp��

R
d� �2# �V��� � En;l��

1=2� � exp��
���
h

p
w�, and v

is the electron velocity. The typical binding energies in
Fig. 4 of 10 meV lead to jTj2 � 10�9 and lifetimes of 
�
0:1 ms. These lifetimes increase exponentially with l and
are substantially longer than those of image states above
planar surfaces.

In contrast to atomic and molecular Rydberg states,
electrons in TISs interact dynamically with holes in the
nanotube when the image potential is induced. Therefore,
scattering of the holes can dramatically reduce the TIS
lifetimes, because any fluctuation in the potential Veff���
can induce transitions between the image states and even
ionize them. In addition, the coupling of TISs to phonons
in the tube will produce similar effects. These decay
mechanisms can be suppressed by working at tempera-
tures (T < 10 K) lower than the transition energy between
different tubular image states.
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FIG. 4 (color online). Tubular image states have binding
energies En;l in the 1–10 meV range. Unlike Coulombic image
potentials, eigenenergies having the same principal quantum
number n, but different angular momentum l are nondegener-
ate. The n � 1 states shown correspond to the wave functions
in Fig. 3.
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Spontaneous radiative transitions between different
tubular image states also limit their lifetimes. These
depend on the transition oscillator strength from an ini-
tial state jnilii to a final state jnflfi: fnfni � �Ef �
Ei�jhnflfj�ei�jniliij2, where lf � li � 1 for the emission
of circularly polarized light. Using the wave functions of
Fig. 3, we have calculated the radiative lifetimes for
several tubular image states and found them to be 5–
10 ms [22]. Stimulated transitions due to blackbody ra-
diation will shorten these lifetimes somewhat [1].

Tubular image states can be formed by inverse photo-
emission (radiative recombination), which has already
been used to populate low-energy image states in front
of Cu, Ag, Sb, and Au surfaces [8]. The cross section for
radiative recombination behaves as +rr � E�1 at low
electron energies, and is related to the cross section for
photoionization by the detailed balance condition,
+rrnl�!� � �!ck�

2+pinl�!� [24], where ! is the photon energy
and E � k2

2 is the electron kinetic energy. We have calcu-
lated the photoionization cross section using the bound
wave functions of Fig. 3 and energy-normalized WKB
wave functions [25] to represent the continuum states. At
electron energies of E� 10 meV, (generated, for ex-
ample, by emission from the tips of other nanotubes
[26]), we find the recombination cross sections to be
+rr � 10�18 � 10�17 cm2, corresponding to rate coeffi-
cients of .rr � 10�13 � 10�12 cm3 s�1. For electron-
beam densities of ne � 1015 cm�3, each nanotube will
acquire an extra electron in a TIS within 0.1–1 ms.

Tubular image states may prove to be a universal fea-
ture of nanoscopic cylindrical conductors and dielectrics.
They provide a new setting in which to investigate ex-
tended (Rydberg-like) states. Their long lifetimes and
moderate binding energies should make possible the study
of a number of phenomena. First, the long-range interac-
tions could be probed by electron interferometry, a
method that has already been used to probe the van der
Waals forces in atoms [27]. Such image states could be
used as nanoscopic charged particle storage rings.
Finally, because the details of the tubular image states
depend directly on the nanotube properties, such as ��!�,
spectroscopy of such states should also provide valuable
information about the nanotube itself.
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[9] U. Höfer et al., Science 277, 1480 (1997).

[10] P. M. Echenique and J. B. Pendry, Prog. Surf. Sci. 32, 111
(1990).

[11] J. E. Ortega et al., Phys. Rev. B 49, 13 859 (1994); I. G.
Hill and A. B. McLean, Phys. Rev. Lett. 82, 2155 (1999).

[12] V. Kasperovich et al., Phys. Rev. Lett. 85, 2729 (2000).
[13] M. Boyle et al. Phys. Rev. Lett. 87, 273401 (2001).
[14] P. M. Platzman and M. I. Dykman, Science 284, 1967

(1999); P. Glasson et al., Phys. Rev. Lett. 87, 176802
(2001).

[15] S. Iijima, Nature (London) 354, 56 (1991); J.W.
Mintmire, B. I. Dunlap, and C.T. White, Phys. Rev.
Lett. 68, 631 (1992); Carbon Nanotubes: Synthesis,
Structure, Properties and Applications, edited by M. S.
Dresselhaus, G. Dresselhaus, and Ph. Avournis (Springer-
Verlag, Berlin, 2000).

[16] T.W. Odom, J. L. Huang, P. Kim, and C. M. Lieber,
Nature (London) 391, 62 (1998); J.W. G. Wildöer, ibid.
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