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Energy Transmission in the Forbidden Band Gap of a Nonlinear Chain
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A nonlinear chain driven by one end may propagate energy in the forbidden band gap by means of
nonlinear modes. For harmonic driving at a given frequency, the process occurs at a threshold
amplitude by sudden large energy flow that we call nonlinear supratransmission. The bifurcation of
energy transmission is demonstrated numerically and experimentally on the chain of coupled pendula
(sine-Gordon and nonlinear Klein-Gordon equations) and sustained by an extremely simple theory.
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submitted to continuous wave radiation. Such problems
have been studied so far mainly through peturbation of

FIG. 1. Plot of the energy E injected in the sine-Gordon chain
for T � 140 as a function of the driving amplitude A.
Introduction.—A nonlinear chain of oscillators has a
few striking fundamental properties, the first of which,
known as the Fermi-Pasta-Ulam (FPU) recurrence phe-
nomenon [1], is the spectral localization of energy: in-
jected initially in one given eigenmode energy does not
eventually distribute among higher modes (as one would
normally expect from a quasilinear approach). The FPU
discovery has been at the origin of nonlinear studies all
over the world and has led to the birth of the soliton
concept [2], soon followed by the creation of the inverse
spectral transform and the concept of integrability [3–5].

A nonlinear chain also shows up spatial localization of
energy in the form of nonlinear coherent structures, the
solitons [6]. This universal behavior is well understood in
the concept of integrability: any localized bounded initial
condition eventually evolves to a number of isolated soli-
tons and a vanishing background of quasilinear radiation.

Nonlinear energy localization is now deeply studied in
the context of discrete systems where intrinsic nonlinear
modes (breathers for short) have been shown to be the
fundamental basic objects [7,8], and have been experi-
mentally observed in Josephson ladders [9]. Moreover, as
an effect of nonintegrability, nonlinear modes do ex-
change energy and the spatial localization acquires novel
quite interesting features [10].

The behavior of a nonlinear medium submitted to
boundary data, as opposed to initial conditions, is also
of fundamental interest. One famous instance is the
project of data transmission in optical fibers in a non-
linear Kerr regime for which the basic model is the non-
linear Schrödinger equation [11]. Another instance is the
nonlinear property of self-induced transparency of a two-
level system submitted to high-energy incident (resonant)
laser pulse [12,13]. In those two cases the concept of
integrability has proved its efficiency as the physical
boundary value problem maps to a well posed Cauchy
(initial value) problem.

There, the nonlinear coherent structures emerge from
sufficiently energetic localized input pulse. Another fun-
damental question is then the behavior of a medium
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integrable models by external driving, see, e.g., [14] for a
review and [15] for interesting recent developments. But
the more basic problem of scattering of continuous wave
onto nonlinear media has not been studied much. Pre-
liminary numerical results have been obtained recently in
[16], where a linear monochromatic wave is scattered on a
nonlinear medium. The nonlinearity allows then wave
transmission under nonlinear modes generation, with a
threshold which was not given a theoretical ground.

Those problems share a common basic question: the
response of a nonlinear medium to periodic boundary
data.We demonstrate here the existence of a bifurcation of
wave transmission within a forbidden band gap (FBG) in
a nonlinear chain forced (periodically) at one end. The
related brutal energy flow through the medium is illus-
trated in Fig. 1 where the energy E penetrating the me-
dium is plotted as a function of the amplitude A of the
boundary driving at a frequency in the FBG (see below
for details).

The mechanism of this bifurcation takes its origin in
nonlinear modes generation by the periodic forcing and
allows for energy injected at one end of a chain to pene-
trate a medium by an intrinsic nonlinear process. This is
called nonlinear supratransmission, and it is illustrated
2002 The American Physical Society 134102-1
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both by numerical simulations of sine-Gordon and of
nonlinear Klein-Gordon equations, and by experiments
on a mechanical chain of pendula.

We shall first prove that, for sine-Gordon, the mecha-
nism for nonlinear modes generation follows a very
simple rule providing an explicit formula for the bifurca-
tion diagram in the parameter space fA;�g where A is the
amplitude of the driving and � its frequency. The rule
states that energy penetrates the medium as soon as the
amplitude A of the harmonic driving at frequency �
exceeds the maximum amplitude of the static breather
of the same frequency.

Nonlinear supratransmission holds also for the non-
linear Klein-Gordon chain obtained by the Taylor expan-
sion of sine-Gordon. Then this process does not rely on
integrability and is expected to be generic as soon as the
model possesses a natural forbidden band gap.

We discover then that harmonic phonon quenching
enhances nonlinear penetration: when the first significant
harmonic generated by the nonlinearity (the third one in
sine-Gordon) falls inside the FBG, the related phonons
stick on the boundary and contribute to the driving al-
lowing supratransmission at lower amplitude. This is an
interesting property in view of experimental applications.

Last the energy transmission by means of nonlinear
modes generation is explored, and the bifurcation is de-
scribed by expressing the energy injected in the medium
in terms of the driving amplitude, hence furnishing a
striking view of the supratransmission process.

Model.—Consider the discrete sine-Gordon chain of
coupled oscillators un�t� (time is normalized to the eigen-
frequency of the individual oscillator)

�uun � c2�un�1 � 2un � un�1� � sinun � 0; (1)

on a semi-infinite line n > 0 with a given initial-bound-
ary value problem, namely, the data of the driving bound-
ary u0�t�, the initial positions un�0�, initial velocities
_uun�0�, and the boundary condition at the chain end. The
linear dispersion relation !�k� is given by

!2 � 1� 2c2�1� cosk�: (2)

The chain will be submitted to external harmonic forcing
u0�t� � A sin�t on a medium initially at rest. For a fre-
quency � in the phonon band, quasilinear waves are
generated in the medium and, for large enough ampli-
tude, these waves will undergo Benjamin-Feir instability,
hence creating localized excitations. These nonlinear
modes have a very important role in the large time
asymptotic properties of a nonlinear system and are sus-
pected to be responsible for turbulentlike behavior [17].

We consider here a driving frequency in the FBG,
namely, �< 1, for which the linear theory would
lead to the evanescent wave A sin��t� exp���n	 with �
given by

� � arccosh

�
1�

1��2

2c2

�
: (3)
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In the nonlinear case, in order to fit the boundary con-
dition (6), the medium adjusts a static breather

ub�n; t� � 4 arctan

�
�c sin��t�

�cosh���n� n0�	

�
; (4)

which is an exact solution in the continuous limit only but
works well for strong coupling (the fully discrete case
c 
 1 will be considered separately).

Bifurcation process.—Adjusting a static breather ac-
tually means to adjust the value of the breather center
�n0 such that the oscillation amplitude at the boundary
n � 0 matches the forcing amplitude. This works up to
the maximum value As of the breather amplitude realized
for n0 � 0. Hence from (4), the threshold As reads as the
following function of the frequency �:

As � 4 arctan

�
c
�

arccosh

�
1�

1��2

2c2

��
; (5)

which has the accurate simplified continuous approxima-
tion 4 arctan�

����������������
1��2

p
=�	.

This bifurcation threshold is now checked on numeri-
cal simulations of (1) with the following initial-boundary
conditions:

u0�t� � A sin�t; un�0� � 0; _uun�0� � A�e��n:

(6)

The initial velocities are those of an evanescent wave such
as to partly avoid the shock wave generated by vanishing
initial velocities (the same results, but time consuming,
are obtained for vanishing initial velocities and a driving
amplitude smoothly growing from the value 0 to A).
Finally, an infinite medium is simulated by an absorbing
boundary. The simulations are made with the dsolve
routine in MAPLE softward package with 105 maximum
iterations. The absorbing end consists of adding a damp-
ing � _uun in the model, with intensity � slowly varying
from 0 to 2 on the last 50 particles.

Results.—In order to generate a bifurcation diagram,
one has to compare between simulations where the non-
linear supratransmission does or does not occur, as illus-
trated in Fig. 2 where the motion of one particle of the
chain is plotted for driving amplitudes just below and just
above the threshold. The simulation is performed with
200 particles with a coupling c � 4. Each large oscilla-
tion in the second figure corresponds to a breather (con-
stituted of a single hump oscillating and propagating)
passing by. Two of them are generated and cross the site
60 at times 120 and 160. The small oscillations seen
between the humps are the harmonic phonons, mainly
of frequency 3�.

We may now proceed with a systematic exploration of
the chain response. The result is presented in Fig. 3 ob-
tained for 200 particles with a coupling c � 10 (some
experiments have actually been made with smaller cou-
pling and fewer points to shorten computation times) for a
typical time of 200 (for frequencies close to the gap value
1, time had to be increased up to 500). The points in Fig. 3
134102-2
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FIG. 2. Function un�t� for n � 60 in the case � � 0:90. The
amplitudes are A � 1:78< As for the first figure and A �
1:79 � As for the second.
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are obtained with an absolute precision of 10�2 for the
amplitude A. They are compared to the theoretical thresh-
old expression (5) (continuous curve).

Harmonic phonon quenching.—Figure 3 shows excel-
lent agreement with formula (5) at least in the region
0:34<�< 1. Discrepencies are seen to occur starting
below 0:33 and 0:18. This results from the driving which,
thanks to the nonlinearity, generates phonons at multiple
frequencies (here third and fifth). If these frequencies lie
in the phonon band, the phonons move away from the
boundary and have no effect on the forcing. If, however,
they lie in the FBG, the related phonons do not propagate
(which we call phonon quenching) and stick on the bound-
ary where they add contribution to the driving.

This effect should thus disappear if the phonons are
eliminated by driving the boundary with the exact
breather expression (4) used to calculate u0�t�, un�0�,
and _uun�0�. In that case we have checked that nonlinear
supratransmission never occurs at an amplitude A < As,
while it occurs for very small deformation of the perfect
breather. For instance, by using �1� ��ub�0; t� as the
driving boundary, in the case � � 0:30, supratransmis-
sion occurs for � � 6� 10�4, i.e., for a driving amplitude
A � 5:0674 instead of the threshold As � 5:0644.
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FIG. 3. Bifurcation diagram in the �A;�� plane. The curve is
the graph of formula (5). The points indicate the lowest ampli-
tude for which nonlinear supratransmission starts.
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Energy transmission.—The nonlinear supratransmis-
sion allows energy to flow through the medium, and we
compare here this energy flow below and above the
threshold. The energy injected in the medium by the
driving boundary is given at time T by

E � �c2
Z T

0
dt _uu0�t��u1�t� � u0�t�	: (7)

In our case u0�t� is the driving (6) and the chain is
supposed infinite with un�t� ! 0 as n ! 1. Choosing
for T an integer multiple of the period of excitation makes
this energy vanish identically in the linear case if the
driving frequency falls in the FBG.

In the nonlinear case, expression (7) is computed nu-
merically. For a driving frequency 0:9 and amplitudes
running from 1:5 to 2:0, we obtain Fig. 1 where the
bifurcation is seen to occur for A � 1:80, the value pre-
dicted by formula (5). This simulation has been run for
frequencies in the range �0:2; 0:9	, with expected results.

Nonlinear Klein-Gordon.—The approach stems from
the existence of a breather solution of the model equation,
allowing one to determine the threshold amplitude. Then
a fundamental question is the role of integrability in the
process of nonlinear supratransmission. To give an indi-
cation that this process is generic (with a stop gap), we
have performed numerical simulations of the following
nonlinear Klein-Gordon chain:

�uun � c2�un�1 � 2un � un�1� � un �
1

3!
u3n �

1

5!
u5n � 0;

(8)

the Taylor truncated expansion of sine-Gordon (the fifth
order is kept to ensure a confining potential at large un).

Then this system is solved with the boundary driving
(6) and the energy (7) is computed for the same parameter
values as for Fig. 1. The result is displayed in Fig. 4. Non-
linear supratransmission is seen to still occur, though
a nonlinear mode solution of the model does not exist.
By scanning the frequency range in the gap, we have
obtained that the process occurs down to � � 0:7 and
then disappears.
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FIG. 4. Energy E injected in the Klein-Gordon nonlinear
chain for T � 140 as a function of the driving amplitude A.
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FIG. 5. Picture of a breather generated in a mechanical
pendula chain driven at one end at a frequency in the forbidden
band gap.
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Experiment.—The phenomenon of nonlinear supra-
transmission can be experimentally realized on a me-
chanical pendula chain driven at one end by a periodic
torque [18]. The detailed analysis of such experiments
will be published later, but it is worth showing here a
picture of a breather generated by the boundary driving at
a frequency inside the FBG. The breather on Fig. 5 has
been obtained with a chain of 48 pendula of angular
eigenfrequency !0 � 15 Hz (upper value of the FBG)
by driving at (angular) frequency 12:7 Hz, which in the
normalized units used here corresponds to � � 0:85. The
coupling constant has been measured to be c � 32.

Conclusion.—A novel fundamental property of a non-
linear medium has been unveiled, namely, the capacity
to transmit energy under irradiation in a forbidden band
gap by means of nonlinear mode generation. Theoretical
construction of the bifurcation diagram is extremely
simple when the one-breather solution is known and the
numerical simulations fit strikingly well the theory. The
generic mechanism of nonlinear mode generation is an
instability which is expected to allow for prediction of
the bifurcation even if the one-breather solution of the
model is not known.

There remain, of course, many interesting open ques-
tions, and currently under study are the modulation of the
driving signal, the effect of damping, viscosity, disorder,
external bias, discreteness, etc. Another essential point is
the search for nonlinear supratransmission in other physi-
cal situations. For instance, this result might provide
understanding of the very mechanism of the generation
of gap solitons in photonic band gap materials [19,20].

Last but not least, as the sine-Gordon chain is a model
for discrete Josephson transmission lines [21], we expect
interesting applications in this field. There, the boundary
driving is realized by microwave irradiation through an
antenna [22], and it actually corresponds to prescribing
the derivative at the origin (Neuman condition). Pre-
liminary numerical simulations has shown that nonlinear
supratransmission also works and that the bifurcation
process obeys the same type of simple rule. Detailed
results on this question will be published later.
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