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Enhancement of the Electric Dipole Moment of the Electron in PbO
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The a�1� state of PbO can be used to measure the electric dipole moment of the electron de. We discuss
a semiempirical model for this state, which yields an estimate of the effective electric field on the valence
electrons in PbO. Our final result is a lower limit on the measurable energy shift, which is significantly
larger than was anticipated earlier: 2jWdjde � 2:4� 1025 Hz� de

e cm�.

DOI: 10.1103/PhysRevLett.89.133001 PACS numbers: 32.80.Ys, 11.30.Er, 31.30.Jv
TABLE I. Atomic parameters hk;k0 (GHz), wsp (a.u.), and �
(cm
1), calculated in the Dirac-Fock approximation for Pb and
Pb�. The relativistic quantum number k is equal to 
1, 1, and

2 for s1=2, p1=2, and p3=2, correspondingly.

h
1;
1 h1;1 h1;
2 h
2;
2 wsp
wsp������������������


h
1;
1h1;1
p �

Pb� 45.5 
8:9 
1:1 1.8 
34:1 
1:7 9452
Pb 42.3 
7:5 
0:9 1.4 
30:0 
1:7 8077
Wd � d
1e ha�1�jHdja�1�i; (2) Ratio 1.08 1.20 1.25 1.30 1.14 1.0 1.17
In his pioneering work, Sandars pointed out that the
effective electric field on a valence electron in a heavy
atom is enhanced by a factor ��2Z3 relative to the applied
laboratory field [1]. That started a long search for the
electric dipole moment (EDM) of the electron de in atomic
experiments [2]. The most stringent limit on de follows
from an experiment on atomic Tl (Z 	 81) [3].

Even larger enhancement is present in heavy polar dia-
tomic molecules [2,4,5]. The heavy atom there is subjected
to an internal E field of �1 a:u:
 5� 109 V=cm, which is
further enhanced by the relativistic factor �2Z3. This ef-
fective field is many orders of magnitude larger than
available laboratory fields; this makes diatomic molecules
very attractive systems to look for de.

Since de is linked to the electron spin, one must work
either with radicals, which have an unpaired electron in the
ground state, or with excited states of ‘‘normal’’ molecules.
Diatomic radicals with the ground state �1=2 have large
enhancement factors which can be relatively easily calcu-
lated [6,7]. The first results of an EDM measurement in
such a molecule (YbF) were recently published [8]. The
molecule PbO is a favorable candidate for a search for de in
the excited state a�1� [4,9], and the group at Yale has begun
EDM experiments on PbO [10]. It is therefore timely
to estimate the effective internal field for the state a�1�
of PbO.

The interaction of de with an electric field E can be
written in four-component Dirac notation as [11]

Hd 	 2de

�
0 0
0 �E

�
: (1)

After averaging over the electronic wave function, this
interaction can be expressed in terms of an effective
spin-rotational Hamiltonian [5,6], Heffd 	 Wd de �Je � n�,
where Je is the electronic angular momentum and n is
the unit vector along the molecular axis. In this paper we
estimate Wd for the molecular state a�1�:
0031-9007=02=89(13)=133001(4)$20.00
where we used ha�1�jJe � nja�1�i � ��a�1�� 	 1. The �
doubling for states with� 	 1 is very small, and even in a
weak external electric field (E0), the energy eigenstates
correspond to definite � rather than definite parity. The
energy of the molecule can be then written as

W�J;M;�� 	 BJ�J� 1� �Wdde�

DE0�M
J�J� 1�

; (3)

where B is the rotational constant, D is the molecular
dipole moment, J is the total angular momentum (includ-
ing rotation), and M is the projection of J along E0. The
EDM contribution can be determined from the difference:

W�J;M;�� 
W�J;
M;
�� 	 2Wdde: (4)

In order to estimate the matrix element in Eq. (2) we
construct here a semiempirical wave function of the state
a�1�. We use the MO LCAO approach, where each mo-
lecular orbital (MO) is expressed as a linear combination of
atomic orbitals (LCAO), and all molecular matrix elements
are reduced to the sums of atomic matrix elements. The
hyperfine structure (HFS) or spin-orbit (SO) interactions as
well as the EDM enhancement factor grow very rapidly
with nuclear charge Z. Therefore, we are interested only in
the Pb part of the MO LCAO expansion.

Analysis of the molecular observables requires knowl-
edge of several atomic matrix elements for Pb. We cal-
culate these in the Dirac-Fock approximation both for
neutral Pb and for Pb�. Results are given in Table I for
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the orbitals 6s and 6pj. For the HFS operator we calculate
the parameters hk;k0 as defined in [5] [we use atomic units
(a.u.) unless otherwise noted]:

hk;k0 	 

gn�
2mp

Z 1

0
�fkgk0 � gkfk0 �dr; (5)

where gn 	 0:59 is the nuclear g factor of 207Pb, mp is the
proton mass, fk and gk are upper and lower components of
the Dirac orbitals, and k 	 �l
 j��2j� 1� is the relativis-
tic quantum number. For the EDM operator (1) in our
minimal basis set there is only one nonzero radial integral,
between 6s1=2 and 6p1=2 orbitals:

wsp 	 

Z 1

0
g
1g1

d�
dr
r2dr; (6)

where � is the atomic electrostatic potential. Finally, we
also need the atomic SO constant � for the 6p shell:

HSO 	 �l � s ) � 	 2
3 �"6p3=2 
 "6p1=2�: (7)

Note that the ratio of the radial integrals for the ion and
for the atom are similar for all relevant integrals (see the
last row of Table I). A simple relation between wsp and
HFS constants holds for both cases: wsp 	

1:7

��������������������������

h
1;
1h1;1

p
. This relation also holds for other prin-

cipal quantum numbers n, e.g., for 7s and 7pj. This fact is
critical for semiempirical models of the EDM enhance-
ment: it implies that the value of Wd does not depend
strongly on what set of radial integrals is used. (The
particular choice of the radial integrals does enter the final
result, through the normalization of the wave function.)
Since the Pb atom in PbO is positively charged, we have
chosen to use the ionic set of integrals from Table I.

In order to develop a semiempirical model for the state
a�1�, we have found it necessary to also consider the wave
functions of several low-lying states of PbO. Previous work
has shown that these states correspond to the configura-
tions and nominal �;�-coupling terms as follows [12,13]:
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X�0���1��� :  21 
2
2!

4
1; (8)

a�1��3���; C0�1��3�
�; etc: :  21 
2
2!

3
1!2; (9)

A�0���3��; B�1��3��; D�1��1�� :  21 2!
4
1!2; (10)

In the naive ionic model of PbO, the two 6p electrons from
Pb move to O and close its 2p shell. This suggests that the
orbitals  1 and !1 are centered on O, and that  2 is
predominantly of the Pb 6s-type. However, below we do
not impose any constraints on the MO LCAO coefficients
for these molecular orbitals, based on this expectation.
Note that only the orbitals  2 and !1;2 contribute to the
spin density of the molecular states under consideration.
Thus, we do not need to know the orbital  1, and below we
omit the index for the orbital  2.

Now we specify coefficients of the MO LCAO expan-
sion for the three valence orbitals of interest:

j !i 	 Ssj6s1=2;!i � Sp�
2!
��
1
3

q
j6p1=2;!i �

��
2
3

q
j6p3=2;!i�;

(11a)

j!i;!i 	 Pi�2!
��
2
3

q
j6p1=2;!i �

��
1
3

q
j6p3=2;!i�; (11b)

j!i;!0 i 	 Pij6p3=2;!0 i; (11c)

where ! 	 �1=2 and !0 	 �3=2. The numerical coeffi-
cients are chosen to account for the quantum number (:
( 	 0�1� for  �!� orbitals. In order to calculate Wd we
must determine the four parameters in Eqs. (11). Below we
try to constrain these parameters using experimental in-
formation about states (9) and (10) . To simplify the
notation, we define the ground state of the molecule as a
vacuum. Then each of the excited states in Eqs. (9) and
(10) is a two-particle state with one hole and one electron.
We do not use any special notation for the hole states;
instead, we simply write the hole orbital in front of the
electron one. We construct wave functions of these states
from the orbitals (11), using at the first stage the
�;�-coupling scheme classification:
ja�1��3���i 	
1���
2

p �j!1;(	
1!2;(	1i � j!1;(	1!2;(	
1i�j ""i 	
1���
2

p �j!1;
1=2!2;3=2i � j!1;3=2!2;
1=2i�; (12a)

jA�0���3��i 	
1���
2

p �j !2;(	1ij ##i 
 j !2;(	
1ij ""i� 	
1���
2

p �j 
1=2!2;1=2i 
 j 1=2!2;
1=2i�; etc: (12b)
We have transformed each wave function from (
 to
!
! representation for convenience.

The rules for calculating hole matrix elements follow
from the fact that the hole in the state j!i actually means
the absence of the electron in the state j 
!i. Thus, the
expectation value for an electronic operator P̂P over the hole
state j!i can be written as

h!jP̂Pj!ih � 
h
!jP̂Pj 
!ie 	
T �h!jP̂Pj!ie; (13)

where we applied the time-reversal operation T. Thus the
final sign depends on the time-reversal symmetry of P̂P,
with the minus sign corresponding to a T-even electronic
operator. For example, the HFS interaction is given by the
product of the T-odd electronic vector ÂAJe and the nuclear
spin I. Thus, for the HFS interaction the plus sign in
Eq. (13) is correct. A similar argument shows that the SO
constant � for a hole has the opposite sign as for an
electron.

From Eqs. (12), the first-order SO splitting  AB between
states A�0�� and B�1� is

 AB 	
�
2
�h!2;3=2jlsj!2;3=2i 
 h!2;1=2jlsj!2;1=2i� 	

�P22
2
:

(14)
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Using the experimental value of this splitting [14] and the
ionic value for � from Table I, we estimate P2:

P22 	
2 AB
�

	
2 � 2420

9450
	 0:51: (15)

We see that the orbital !2 has a large contribution from the
Pb orbital 6p. The data on energy levels [14] show then
that for all levels with one electron in the!2 orbital, the SO
interaction is comparable to the splittings between these
levels. Therefore, there must be significant SO mixing
between such states.

We start with the mixing within configuration  2!31!2.
The mixing angle � between states a�1� and C0�1� is

� 

h3�


1 jHsoj
3��

1 i

j aC0 j
	
�1 � �2
2j aC0 j

; (16)

where  aC0 is the energy splitting between a�1� and C0�1�,
and �i � �P2i . If we assume that P21 � P22 (corresponding
to the naive ionic model), we can estimate the value of �:

� 

�2

2j aC0 j

 0:3; (17)

and write the new wave function in the form:

ja�1�i 	 c�j!1;3=2!2;
1=2i � s�j!1;
1=2!2;3=2i; (18)

c� � cos

�
!
4

 �

�
; s� � sin

�
!
4

 �

�
: (19)

SO interaction also mixes configuration  2!31!2 with
configurations  !31!

2
2 and  !41!2. These mixings can be
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accounted for by substitution of the original orbitals
j!i;1=2i with the perturbed orbitals

j~!!i;1=2i 	 cij!i;1=2i � sij 1=2i: (20)

There is no experimental information about levels of the
configuration  !31!

2
2, so we cannot reliably estimate the

mixing parameter s2. In contrast, both levels with� 	 1 of
the configuration  !41!2 are known [i.e., B�1) and D�1�].
That allows us to write for s1 the estimate

s1 	 2:8s2�P1Sp: (21)

These SO mixings then lead to the final form of the wave
function of the state a�1�,

ja�1�i 	 c�j!1;3=2 ~!!2;
1=2i � s�j~!!1;
1=2!2;3=2i: (22)

The G factor for the state (22) is given by

Gk 	 ha�1�jL0 � 2S0ja�1�i 	 2
 s2�s
2
1 
 c2�s

2
2: (23)

The measured value Gk 	 1:84�3� [15] corresponds to the
following equation for mixing parameters:

s2�s21 � c2�s22 	 0:16�3�: (24)

The signs of the parameters s1;2 should be chosen so that
the contribution of atomic orbital 6p1=2 to the molecular
orbital  is increased: in this case relativistic corrections to
the binding energy of the  orbital are positive.

The matrix element of the HFS interaction for the state
a�1� (22) has the form
ha�1�jHhfsja�1�i 	 c2��h!1;3=2jhhfsj!1;3=2i 
 h~!!2;1=2jhhfsj~!!2;1=2i� � s2��h!2;3=2jhhfsj!2;3=2i 
 h~!!1;1=2jhhfsj~!!1;1=2i�: (25)

We use expressions from Ref. [5] for the one-electron matrix elements and numbers from Table I, combined with the
measurement of the hyperfine constant for the state a�1�, Ak 	 
4:1 GHz [15], to find another equation relating the
various coefficients of the model

30�c2�s22 � s2�s21�S
2
s � 1:8�c2�s22 � s2�s21�S

2
p � �4:6s2�c21 
 1:4c2��P21 � �4:6c2�c22 
 1:4s

2
��P22


4:7s2�c1s1P1Sp 
 4:7c2�c2s2P2Sp 	 4:1: (26)
(Note that the formulas of Ref. [5] are strictly applicable
only for orbitals and states with ! 	 � 	 1=2.
Equation (26) takes into account simple modifications of
these formulas for the present situation.)

Finally, we introduce two additional constraints, which
account for normalization and the Pauli principle:

S2s � S2p � N0; P21 � P22 � N0: (27)

We choose N0 	 1:2 here in order to account for inaccur-
acy of the Hartree-Fock approximation used to determine
the atomic parameters in Table I.

The parameters � and P2 are unambiguously fixed by
Eqs. (15) and (17). We choose s1 and P1 as free parameters
and solve Eqs. (21), (24), and (26) for parameters s2, Sp,
and Ss. After that we reject solutions which do not meet the
constraints (27). Only some of the parameters are well
constrained. The variation ranges are�
s1 � 0:2; 0:4 � s2 � 0:5;
S2p � 0:5; S2s � 0:5:

(28)

The parameter P1 appears to be restricted only by the
normalization condition (27).

It may be possible to add some restrictions to reduce the
ranges of variation in Eq. (28). For example, the relatively
large value of s2 should require a large value of Sp.
However, such additional restrictions would add arbitrari-
ness to the model and may affect its reliability. We use only
the minimal set of constraints to determine the range of
possible values of Wd.

For the wave function (22), there are two contributions
to the EDM parameter Wd from each of the one-electron
orbitals with j!j 	 1=2:
133001-3



TABLE II. Dependence of the EDM constant Wd (in a.u.) on
the parameters of the model.

Ak Gk � P22 jWdj

(GHz) max min


4:1 1.84 0.30 0.51 19.6 13.7

4:1 1.81 0.30 0.51 19.1 12.0

4:1 1.87 0.30 0.51 20.3 15.4

4:1 1.84 0.24 0.51 19.8 13.2

4:1 1.84 0.36 0.51 20.3 15.5

4:1 1.84 0.30 0.41 18.2 12.1

4:1 1.84 0.30 0.61 20.3 15.1

3:3 1.84 0.30 0.51 17.0 11.2

4:9 1.84 0.30 0.51 22.0 16.4
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Wd 	 
 c2�W
~!!2
d 
 s2�W

~!!1
d (29a)

	
4wsp���
3

p Ss�
���
2

p
c2�c2s2P2 
 c2�s

2
2Sp

�
���
2

p
s2�c1s1P1 
 s2�s

2
1Sp�: (29b)

We find that the first term in (29b) always dominates the
sum. The second term is not negligible, but the final two
terms contribute & 10%. It is important that the leading
contribution to Wd is similar to the first term in Eq. (26),
which dominates the HFS. This implies that the parameter
Wd is well constrained even though some of the parameters
of the wave function are not. We obtain

jWdj 	 16:6� 3:0 a:u:; (30)

where the uncertainty reflects the range of values found
within the model just described.

It is also important to check how Wd depends on the
‘‘fixed’’ parameters � and P2, as well as on the input data
for Ak and Gk, since our model relating the MO LCAO
coefficients to these parameters is rather crude. In Table II
we solve the model equations for values of these quantities
varying from the best values by �20%. We find that this
variation of the input parameters widens the range for Wd
substantially (to �5:4 a:u:), but still does not allow dra-
matically smaller values of Wd.

It is known from previous calculations of Wd for other
diatomic molecules, that correlation corrections tend to
decrease the result by 10%–20% from the Hartree-Fock
level. Therefore, we state our final result as a conservative
lower limit on Wd,

jWdj � 10 a:u: 	 12� 1024
Hz

e cm
: (31)
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This lower bound is several times larger than earlier,
naive estimates which did not consider the effect of SO
mixing on the (nominally) !-type orbitals of the a�1� state
[5]. Our model shows significant similarity between the
orbital ~!!2;1=2 in PbO and the single valence orbital in the
ground state of the free radical PbF. It is thus natural that
our bound is close to the value calculated for PbF [16].
(Coincidentally, our bound is also similar to the calculated
value for YbF [17–20].) However, we stress that this first
semiempirical estimate of the effective field in PbO has
very limited accuracy. Thus, more elaborate calculations of
the a�1� state are highly desirable.
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