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We report STAR results on the azimuthal anisotropy parameter v, for strange particles Kg, A,and A
at midrapidity in Au + Au collisions at ,/syy = 130 GeV at the Relativistic Heavy Ion Collider. The
value of v, as a function of transverse momentum, p,, of the produced particle and collision centrality
is presented for both particles up to p, ~ 3.0 GeV/c. A strong p, dependence in v, is observed up to
2.0 GeV/c. The v, measurement is compared with hydrodynamic model calculations. The physics
implications of the p; integrated v, magnitude as a function of particle mass are also discussed.
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Measurements of azimuthal anisotropies in the trans-
verse momentum distribution of particles can probe early
stages of ultrarelativistic heavy ion collisions [1-3]. In
high-energy nuclear collisions, the initial geometric an-
isotropy is established from the overlap between the col-
liding nuclei. The time necessary to build up this spatial
anisotropy is believed to be short because the colliding
nuclei are highly Lorentz contracted in the center-of-
mass system. During a ~5-50 fm/c period, rescattering
transfers the initial spatial anisotropy into a momentum
anisotropy. This momentum anisotropy manifests itself
most strongly in the azimuthal distribution of transverse
momenta. The extent to which the initial spatial anisot-
ropy is transformed to the measured momentum anisot-
ropy depends on the initial conditions and the dynamical
evolution of the system. In particular, anisotropy meas-
urements for nucleus-nucleus collisions at the Relativistic
Heavy Ion Collider (RHIC) energies may provide infor-
mation about a partonic stage that may exist early in the
collision evolution [1,4—8].

The transverse momentum distribution of particles can
be described in the form
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PACS numbers: 25.75.Ld, 25.75.Dw

d*N _dN
dp?d¢  2mdp?

[1 +2> v, cos(n¢)} (1)

where p, is the transverse momentum of the particle, ¢ is
its azimuthal angle with respect to the reaction plane
[9,10], and the harmonic coefficients, v,,, are anisotropy
parameters. The second coefficient v, is called elliptic
flow. Recent experimental results from RHIC [11-14]
include measurements of v, as a function of collision
centrality and p, for charged particles with p, <
2.0 GeV/c, and for identified charged pions, kaons, and
protons for p, up to ~0.8 GeV/c. The degree of the
anisotropy transfer from position to momentum distribu-
tion depends on the density of the system during its
evolution and the scattering cross sections of the particles
involved (parton and/or hadron). As a result, recent theo-
retical work attempted to deduce the initial gluon density
from partonic energy loss [6] and the equation of state
from hydrodynamic model calculations [5,7].

Most anisotropic flow parameters measured to date are
for nonstrange particles [11,12,15-19]. Of the studies for
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multistrange baryons and nonstrange hadrons were ob-

4000 %0 -I : —

VOLUME 89, NUMBER 13 PHYSICAL REVIEW LETTERS 23 SEPTEMBER 2002
identified strange particles [12,20—25] most have been at o000 , ‘ é ‘ ]
much lower collision energies. At the CERN Super Proton 5000 K o 1 A : |
Synchrotron (SPS), quantitative differences between 9o ?

60 :

! ]

served in transverse radial flow in Pb + Pb collisions at
JSwn = 17 GeV [26,27]. A physical scenario in which
multistrange baryons do not participate in a common
expansion and thus decouple early from the collision
system due to their small hadronic cross sections was
proposed to explain this observation [28]. This explana-
tion suggests that it may be possible to obtain insight into
very early stages of the collisions by studying the elliptic
flow of strange particles.

In this Letter, we report the first measurement of the
azimuthal anisotropy parameter v, for the strange par-
ticles K9, A, and A from Au + Au collisions at /syy =
130 GeV. Our measurement of v, for different central-
ities as a function of p, using the Solenoidal Tracker at
RHIC (STAR) extends to a p, of about 3.0 GeV/c, much
higher than previously measured for identified charged
pions, kaons, and protons [12].

The STAR detector [29] consists of several subsystems,
including a Time Projection Chamber (TPC) [30], in a
large solenoidal magnet. For collisions in its center, the
TPC measures charged tracks in the pseudorapidity range
|l < 1.5 with 27 azimuthal coverage. During the year
2000 data taking the STAR magnet operated with a
0.25 Tesla field, allowing tracking of particles with p, >
0.075 GeV/c. A scintillator barrel surrounding the TPC
measures the charged particle multiplicity within [n] < 1
for use as a central trigger. Two zero-degree calorimeters
[31], located at *=18.25 m from the nominal interaction
region and subtending an angle 6 < 0.002 radians, are
used in coincidence as a minimum-bias trigger. This
analysis uses 201 X 10° minimum bias and 180 X 103
central events. .

We reconstruct both Kg — 7"+ 7 and A(A) — p +
7~ (p + 7") from their charged daughter tracks detected
in the TPC. Tracks are assigned as p, p, w , or w' based
on their charge sign and their mean energy loss, (dE/dx),
in the TPC gas. The mass and the kinematic properties of
the Kg, A, or A candidates are extracted from the decay
vertex geometry and daughter particle kinematics.
Figure 1 shows the invariant mass distributions for
77~ candidates showing a K} mass peak and for p7r~
candidates showing a A mass peak. The dashed lines are
fits to the background and the peak. We determined that
the background is dominated by combinatorial counts by
rotating all positive tracks 180° in the transverse plane
and reconstructing the Kg and A(A) decay vertices. This
procedure destroys all real vertices within our acceptance
so that we can describe the combinatorial contribution to
the invariant mass distributions. The observed masses,
496 + 8 MeV/c? for w" o~ and 1116 =4 MeV/c?* for
pr, are consistent with accepted values [32] and the
widths are determined by the momentum resolution of

132301-3

) |
? 0
2000 -+ o 9 —
i Q,
BRRREE e .

Counts (Arbitrary Units)

. . | |
0.4 0.5 0.6 1.1 1.125 1.15

2 2
mass GeV/cY) mass,,_ (GeV/cY)

T+~ (
FIG. 1 (color online). Invariant mass distributions for 7+ 7~
showing a Kg mass peak (left panel) and for p7~ showing a A
mass peak (right panel). Fitting results are shown as dashed
lines in the figure. For presentation a greater number of events
has been used for the A plot.

the detector. The particles used for the v, analysis are
from the kinematic region of |y| = 1.0 and 0.2 = p, =
3.2 GeV/c for KO or 0.3 = p, =3.2 GeV/c for A + A,
where y is the particle’s rapidity. No significant differ-
ences in elliptic flow are observed between A and A, so
because of the limited statistics, A and A are summed
together.

We choose the requirements for the K and A(A)
daughter candidates to maximize statistics and to elimi-
nate autocorrelations in the event plane calculation. For
K9, we require the daughter candidate tracks to have a
distance-of-closest-approach (dca) to the collision vertex
> 1.0 cm. For the A(A) reconstruction, we choose pion
candidates with a dca > 1.5 cm and proton candidates
with a dca > 0.8 cm. We use the peak in the invariant
mass distribution to measure the yield of K or A + A
particles for different values of ¢ and p,. Using the ¢ bin
center for the value of ¢, we evaluate v, as a function of
p, by calculating (cos(2¢)) in different p, intervals. This
technique enables us to measure elliptic flow for identi-
fied particles beyond the p, region where particle identi-
fication via (dE/dx) fails [12].

The real reaction plane is not known, but the event
plane, an experimental estimator of the true reaction
plane, can be calculated from the azimuthal distribution
of tracks [11]. To calculate the event plane, we select
charged particle tracks with at least 15 measured space
points, 0.1 < p, = 2.0 GeV/c and |n| < 1.0. We also re-
quire the ratio of the number of space points to the
expected maximum number of space points for each track
to be greater than 0.52, suppressing split tracks from
being counted twice. Events are required to have a pri-
mary vertex within 75 cm longitudinally of the TPC
center. These cuts are similar to those used in Ref. [11],
and our analysis is not biased by them.

To avoid possible autocorrelations, tracks used for the
Kg or A(A) reconstruction are excluded from the set of
tracks used to calculate the event plane. In this analysis,
where v, is not calculated on a particle by particle basis,
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all tracks that might be used for the reconstruction of K9
or A(A) are excluded from the event plane calculation.
Only tracks with a dca <1.0 cm are used in the event
plane calculation while the K vertices do not include
these tracks. In the A + A analysis, since p and p can-
didates are allowed to have a dca <1.0 cm, all tracks that
were assigned as p or p candidates, based on their charge
sign and (dE/dx), are excluded from the event plane
calculation.

When the azimuthal anisotropy is evaluated via v, =
(cos(2¢)), the observed v, must be corrected to account
for the imperfect event plane resolution [33]. We estimate
the resolution using the method of random subevents [10]
and use the relative multiplicity, as in Ref. [11], to measure
the event centrality. The maximum resolution for the Kg
and A + A analysis is found to be 0.681 = 0.004 and
0.582 £ 0.007, respectively, and is reached in the central-
ity corresponding to 25%—-35% of the measured cross
section. The poorer resolution for the A + A analysis is
caused by the exclusion of a greater number of tracks
from the event plane calculation as discussed in the
previous paragraph.

Elliptic flow as a function of transverse momentum for
central and midcentral collisions calculated from 201 X
10° minimum bias and 180 X 103 central events is shown
in Fig. 2. The two particles show a similar p, dependence
in the two centrality intervals. The p, dependence is
stronger in more peripheral collisions than in the central
collisions. A similar dependence was observed for
charged particles in Au + Au collisions at the same
RHIC energy [12].

For this analysis, three main sources contribute to
systematic errors in the measured anisotropy parameters:
particle identification, background subtraction, and cor-
relations unrelated to the reaction plane (nonflow) such as
resonance decays, jets, or Coulomb and Bose-Einstein
correlations [34,35]. The contribution from the first two
sources is estimated by examining the variation in v,
after changing several track and event cuts. We estimate
that these effects contribute an error of less than *0.005
to v,. The contribution to v, from nonflow effects, how-

s — T T
% 025 |- (@) K(s) T (b) A+ A |

0.2 T 7
. y
8 0.15 . * -+ » * 1
> o1 | . 8? - .
8 0.05 |- . O o Q T~ a" © ¢ (# 7
g o ,*50 ______________________ _-_,'_'_9__‘? ...................... 4
< ‘ L [o0-11% m11-45%] ‘

0 1 2 3 0 1 2 3

Transverse momentum p, (GeV/c)

FIG. 2. Elliptic flow v, as a function of p, for (a) Kg and (b)
A + A. Circles and filled squares are for central (0% —11%) and
midcentral (11%-45%) collisions, respectively. Error bars
shown are statistical errors only.
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ever, could be significant, especially in peripheral colli-
sions. A previous study used the correlation of event plane
angles from subevents to estimate the magnitude of these
contributions [36]. Nonflow effects are assumed to con-
tribute to the first and second harmonic correlations by
similar amounts, so the magnitude of the first harmonic
correlation sets a limit on the nonflow contributions to v,.
That study showed that the nonflow systematic errors for
charged particles are typically +0 and —0.005 but are
significantly larger in the more peripheral events where
the error increases to +0 and —0.035 for the 58%—-85%
most central events. These estimates are confirmed by
measurements of v, using the 4th-order cumulant
method, a method that is insensitive to nonflow effects
but which leads to larger statistical errors [37]. We assume
the systematic errors on v, for the neutral strange par-
ticles K9 and A + A are similar to those found in the
analysis of charged particles [12].

To make a comparison with available hydrodynamic
model calculations [5], we plot v,(p,) for both K9 and
A + A from201 X 10° minimum-bias collisions in Fig. 3.
Also shown in the figure is v,(p,) for charged hadrons
[38]. Within statistical uncertainty, the Kg results are in
agreement with the v, of charged kaons (not shown) [12].
We observe that v, for both strange particles increases as
a function of p, up to about 1.5 GeV/c, similar to the
hydrodynamic model prediction. In the higher p, region,
however (p, = 2 GeV/c), the values of v, seem to satu-
rate. It has been suggested that the shape and height of v,
above 2-3 GeV/c in a perturbative QCD model is related
to energy loss in an early, high-parton-density stage of
the collision [6].

The p, integrated anisotropy parameters for charged
hadrons, Kg, and A + A from minimum-bias collisions
are shown in Fig. 4. The integrated values of v, are
calculated by parametrizing the yield with the inverse

T T T T
025 - O charged hadrons _

® K O A+A

2 - Model Results

Anisotropy parameter v,

Transverse momentum p, (GeV/c)

FIG. 3 (color online). Elliptic flow v, as a function of p, for
the strange particles K9 (filled circle) and A + A (open
squares) from minimum-bias Au + Au collisions. For compar-
ison, v, of charged hadrons (open circles) is also shown. The
lines are from hydrodynamic model calculations [5]. Error bars
shown are statistical errors only.
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FIG. 4 (color online). Integrated elliptic flow v, as a function
of particle mass. The gray band and central line indicates the
hydrodynamic model results [5]. Error bars shown are statis-
tical errors only.

slope parameter of exponential fits to the Ky or A + A
transverse mass distributions [38,39]. The integrated v, is
insensitive to the upper and lower bounds of the integra-
tion. Although the v,(p,) of A + A is below the v,(p,) of
Kg for most p,, as shown in Fig. 3, the p, integrated v,
values increase with the particle mass. This increase is
partly due to the relatively higher mean p, of the A + A
compared to the K9. In hydrodynamic models, although
the spatial geometry of the pressure gradient and the
resultant collective velocity are the same for all particles,
massive particles tend to gain larger transverse momenta
and so develop a larger elliptic flow. The hydrodynamic
model calculations [5], shown as a gray band and central
line, are, within errors, in agreement with this result. The
width of the gray band in Fig. 4 indicates the uncertain-
ties of the model calculation, mostly due to the choice of
the freeze-out conditions. The increase of v, with particle
mass indicates that significant collective motion, perhaps
established early in the collision, is an effective means to
transfer geometrical anisotropy to momentum anisotropy.
The nature of the particles during this process, however,
whether parton or hadron, and the degree of thermal-
ization for strange particles during the collective expan-
sion remains an open issue.

In summary, we have reported the first measurement of
the anisotropy parameter, v,, for K(S) and A + A, from
Au + Aucollisions at \/syy = 130 GeV. The v, values as
a function of p, from midcentral collisions are higher at
each p, than v, from central collisions. Hydrodynamic
model calculations seem to adequately describe elliptic
flow of the strange particles up to a p, of 2 GeV/c. For p,
above 2 GeV/c, however, the observed v, seems to satu-
rate whereas hydrodynamic models predict a continued
increase with p,. The p, integrated v, as a function of
particle mass is consistent with a hydrodynamic picture
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where collective motion, established by a pressure gra-
dient, transfers geometrical anisotropy to momentum
anisotropy. Although the hadronic scattering cross sec-
tions of strange and nonstrange particles may be differ-
ent, we have yet to see deviations in the measured v, from
hydrodynamic calculations at low p, for strange or non-
strange particles. In a possible partonic phase prior to the
hadronic epoch, the hadronic scattering cross sections for
the final hadrons are not relevant. As such, if the elliptic
flow of identified particles proves to be independent of
their relative hadronic cross sections, it may be evidence
that v, is established during a partonic phase.
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