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Kinetically Locked-In Colloidal Transport in an Array of Optical Tweezers
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We describe measurements of colloidal transport through arrays of micrometer-scale potential wells
created with holographic optical tweezers. Varying the orientation of the trap array relative to the
external driving force results in a hierarchy of lock-in transitions analogous to symmetry-selecting
processes in a wide variety of systems. Focusing on colloid as a model system provides the first
opportunity to observe the microscopic mechanisms of kinetic lock-in transitions and reveals a new
class of statistically locked-in states. This particular realization also has immediate applications for
continuously fractionating particles, biological cells, and macromolecules.
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FIG. 1 (color online). Schematic diagram of the experimental
system. Laser beams formed by a diffractive optical element
(DOE) are transferred by a telescope to the input pupil of a
high-NA objective lens which focuses each into an optical trap.
The same lens is used in a conventional light microscopy
system (illuminator, condenser, objective, video eyepiece, and
CCD camera) to form images of spheres moving past the traps,
as shown schematically in the inset. A spatial filter blocking
nating materials in suspension. the undiffracted laser light is omitted for clarity.
Depending on the balance of forces, a particle driven
across a corrugated potential energy landscape either
flows with the driving force or else becomes locked-in
to a symmetry-preferred route through the landscape. The
emergence of kinetically locked-in states whose trans-
port properties are invariant over a range of control
parameters characterizes many systems and is referred
to variously as phase-locking, mode-locking, and sto-
chastic resonance. Examples arise in the electromigration
of atoms on crystal surfaces [1], in flux creep through
type-II superconductors [2,3], in flux tunneling through
Josephson junction arrays [4], and in electron transport
through charge density waves and two-dimensional elec-
tron gases [5]. Related problems abound in the theory of
chemical kinetics and glass formation.

Despite their ubiquity, kinetically locked-in states
and transitions among them have been observed directly
only in numerical simulations. Their presence in experi-
ments has been inferred indirectly from their influence on
collective large-scale properties such as the magnetore-
sistance and Hall conductance of superconductors and
two-dimensional electron gases. Consequently, most the-
oretical studies have addressed the collective transport
properties of strongly coupled systems whose internal
interactions modify the influence of the modulated po-
tential and the external driving force. How kinetic lock-in
affects single-particle transport has received far less
attention.

This Letter describes observations of a hierarchy of
kinetically locked-in states in the microscopic trajecto-
ries of individual colloidal particles flowing classically
through large arrays of optical tweezers. Unlike previous
studies on other systems which have found that locked-in
states correspond to deterministically commensurate tra-
jectories through the potential energy landscape, our ob-
servations also reveal a new class of statistically locked-
in states. The locked-in states’ ability to systematically
and selectively deflect particles’ trajectories suggests that
optical trap arrays will be useful for continuously fractio-
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Previous studies [6] have created optical potential en-
ergy landscapes with static interference patterns and
studied their influence on the equilibrium phase behavior
of strongly interacting colloidal monolayers. The present
study extends this approach to explore colloidal kinetics
in adjustable arrays of discrete potential wells.

Our system, shown schematically in Fig. 1, consists of
colloidal silica spheres 2a � 1:5 �m in diameter (Bangs
Labs Lot 4258) dispersed in a 20 �m-thick layer of
deionized water sandwiched between horizontal glass
surfaces. These spheres are considerably denser than
water and readily sediment into a monolayer about
1 �m above the lower wall [7]. The edges of the sample
volume are sealed to form a flow cell, with access pro-
vided by two glass tubes bonded to holes passing through
the upper glass wall. These tubes also serve as reservoirs
for colloid, water, and clean mixed-bed ion exchange
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FIG. 2 (color online). Spheres flowing through an array of
optical traps follow channels along the [10] direction of the trap
lattice. White spots denote tweezer positions, and the
3 �m-diameter circle indicates an individual tweezer’s region
of influence. Traces show the paths of 300 separate spheres
tracked in 1=30 s intervals over a 3 min period.
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resin. Their ends are connected to continuous streams of
humidified Ar gas which minimize the infiltration of
airborne contaminants and enable us to drive the colloid
back and forth through the channel. Blocking one of the
gas streams causes a pressure imbalance which forces the
dispersion through the sample chamber and past the 75�
58 �m2 field of view of a 100� numerical aperture (NA)
1.4 oil-immersion objective mounted on an Olympus
IMT-2 microscope base. Steady flows of up to u �
100 �m=s can be sustained in this way for about 10 min.

We use precision digital video microscopy [8] to track
the individual spheres’ in-plane motion with a resolution
of 10 nm at 1=60 s intervals. The resulting trajectory data
allow us to monitor the spheres’ progress through poten-
tial energy landscapes that we create with light.

Our optical potential landscapes are created with the
holographic optical tweezer technique [9,10] in which a
single beam of light is formed into arbitrary configura-
tions of optical traps by a computer-designed diffractive
beam splitter. Each beam created by the diffractive opti-
cal element (DOE) is focused by the objective lens into a
diffraction-limited spot which acts as an optical tweezer
[11] capable of stably trapping one of the silica spheres
against gravity and random thermal forces. For the
present experiments, we created a planar 10� 10 array
of optical traps on 2:4 �m centers using light from a
frequency-doubled Nd : YVO4 laser operating at 532 nm.
The traps are focused into the plane of the monolayer to
avoid displacing spheres vertically as they flow past. Each
trap is powered by about 150 �W, and their intensities
vary by �20% from the mean, as determined by imaging
photometry. Rotating the DOE through an angle �, as
shown in Fig. 1, rotates the array of traps relative to the
flow, ~uu, by the same amount, without otherwise affecting
the traps’ properties [10].

If the Stokes drag due to the flowing fluid greatly
exceeds the optical tweezers’ maximum trapping force,
then colloidal particles flow past the array with their
trajectories unperturbed. Conversely, if the trapping force
dominates, then particles fall irreversibly into the first
traps they encounter. Our observations are made under
intermediate conditions for which trapping and viscous
drag are nearly matched and particles hop readily from
trap to trap. Our silica spheres enter the hopping state for
flow speeds u in the range 40 �m=s< u< 80 �m=s. The
monolayer’s areal density is low enough that typically
only one or two spheres are in the array at any time. Their
separations are large enough that hydrodynamic coupling
between spheres should be negligible [12].

Figure 2 shows the superimposed trajectories of 300
particles flowing through a 9� 9 �m2 section of the field
of view which includes one corner of the optical tweezer
array. The flow drives spheres directly from left to right
across the field of view, with small lateral deviations
resulting from Brownian fluctuations. Those spheres pass-
ing within about 1:5 �m of the optical traps are drawn
into the array’s [10] rows and follow them to their ends. In
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this case, the [10] rows are aligned with the bulk flow, and
the traps’ principal influence is to herd particles into well-
defined channels and to suppress their transverse fluctua-
tions. The appearance of such commensurate trajectories
through the array defines a channeling state, named by
analogy to ion channeling through conventional crystals.

While plotted trajectories help to visualize individual
particles’ interactions with the optical traps, a comple-
mentary view of the array’s overall influence is offered by
the relative probability P�~rr� d2r of finding a particle
within d2r of ~rr at some time after it enters the field of
view. Figure 3(a) shows data compiled from the trajecto-
ries of 18 601 spheres obtained under the same conditions
as Fig. 2. They reveal that spheres are nearly 7 times more
likely to be found in the rows of traps than at any point in
the bulk flow outside of the array. The correspondingly
low probability for finding spheres between the rows and
the comparatively subtle modulation along the rows re-
veals that the time required for a sphere to hop from trap
to trap along a row is so much shorter than the time
needed for a transverse jump that the spheres essentially
never leave the [10] rows. Once the spheres have hopped
through the ranks of traps, they return to the bulk flow,
their trajectories eventually blurring into each other
through diffusion.

Figure 3(b) shows data from the same sample but with
the traps oriented at � � 9� with respect to the flow. Even
though the flow is no longer aligned with the lattice, the
spheres still closely follow the array’s [10] rows. As a
result, the channeling trajectories are systematically de-
flected away from the flow’s direction and leave a distinct
shadow downstream of the array. This insensitivity to
orientation distinguishes the [10]-commensurate state as
being kinetically locked-in and confirms the conjecture
[2,5] that kinetic lock-in with systematic deflection can
128301-2
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FIG. 4 (color online). (a) Variation of the mean normalized
particle speed perpendicular to the externally applied force as
a function of array orientation. Emphasized data points corre-
spond to conditions in Fig. 3. (b) Mean normalized longitu-
dinal speed. (c) Mean flow speed in the bulk for each
orientation studied.
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FIG. 3. Relative probability that a sphere will pass through a
point in the field of view, when the [10] direction of the trap
lattice is oriented at (a) � � 0�, (b) 9�, (c) 28�, and (d) 45�. In
all figures, the external flow is from left to right.
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occur as a single-body process rather than requiring the
elasticity of an interacting monolayer.

When the trap array is rotated even further to � � 28�,
as in Fig. 3(c), the particles no longer channel along the
[10] direction. Although the spheres still spend more time
in individual traps than in the bulk, they no longer follow
clearly defined paths from one trap to another.

Rotating to � � 45�, as in Fig. 3(d), reveals another
channeling state with particles following the array’s di-
agonal �1�11� rows. Rotating away from 45� demonstrates
this channeling state also to be locked-in. In principle,
additional locked-in channeling states should appear at
other angles corresponding to commensurate paths
through the array [13]. In a system with square symme-
try, commensurate orientations occur for rational values
of tan�.

To quantify the degree to which the array deflects
spheres’ trajectories, we compare the velocity ~vv a particle
attains while moving inside the array to its velocity ~uu in
the bulk flow. In particular, Fig. 4(a) shows the mean
normalized transverse component of the in-array velocity
v?���=u � � ~vv��� � ~uu�=�uv� which is roughly analogous
to the Hall coefficient in electron transport. The monot-
onically positive slope of v?���=u in the range j tan�j<
0:2 characterizes the domain over which the [10] state is
locked-in, with increasing rotation yielding systemati-
cally increasing deflection.

After the deflection reaches its maximum at tan� �
0:2, it decreases nonmonotonically to zero at the com-
mensurate orientation tan� � 1=2. Rotating the array
beyond this point results in retrograde deflection. In
contrast, no change of sign is predicted for the Hall
coefficient of a periodically modulated two-dimensional
electron gas with increasing magnetic field, although this
may reflect the choice of sixfold rather than fourfold
symmetry for the potential landscape in the available
simulations [5]. If indeed such sign reversal can be ob-
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tained through simple patterning of an electronic system,
the effect would be unprecedented and could have wide-
spread applications in magnetic data retrieval.

Beyond tan� � 0:85, trajectories become locked-in to
the commensurate channeling state along the �1�11� direc-
tion. The deflection returns to zero in this state when the
�1�11� rows align with the external force at tan� � 1.
Quantitatively indistinguishable results for v?���=u
were obtained for particles moving with different speeds
in the range 50 �m=s< u< 75 �m=s.

While v?=u is independent of u over the entire range of
hopping conditions, such is not the case for the other com-
ponent, vk=u. As can be seen from Figs. 4(b) and 4(c), the
normalized longitudinal velocity is strongly correlated
with u. Although structure in vk��� may reflect aspects
of particles’ hopping mechanisms, much as the magneto-
resistance does for electron transport, it is masked in the
available data by variations in u.

The [10] and �1�11� locked-in states are characterized by
the positive slope they induce in v?���=u. That other,
smaller features also correspond to locked-in states
becomes apparent in another representation of the data.
Simulations [2] have demonstrated that kinetically
locked-in states appear as plateaus in the � dependence
of the ratio v�01�=v�10� of in-array speeds along the per-
pendicular [01] and [10] directions. Comparison with
predictions for the circle map and related dynamic sys-
tems further suggests that the widest plateaus should be
128301-3
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FIG. 5 (color online). Orientation dependence of particles’
speeds along and normal to the [10] direction reveals a series
of plateaus corresponding to kinetically locked-in states.
Plotted points are the most probable, or mode, values from
the distribution obtained from all trajectories at each angle.
Shaded regions indicate the 99% confidence interval about
these values.
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centered at the simplest rational values of tan� and that
the overall hierarchy of locked-in states should take the
form of a Devil’s staircase with increasing rotation [2,13].
The corresponding representation of our data appears in
Fig. 5. As expected, the data display a series of kineti-
cally locked-in states, with plateaus in v�01�=v�10� corre-
sponding to regions of positive slope in v?���=u. The
large plateaus around tan� � 0 and tan� � 1 correspond
to the [10] and �1�11� locked-in states. However, the higher-
order plateaus between tan� � 0:2 and tan� � 0:8 are not
centered on simple rational values of tan�. Instead, the
commensurate orientations at tan� � 1=3, 1=2, and 2=3
correspond to transitions between plateaus. Furthermore,
the associated plateaus include nonchanneling states such
as Fig. 3(c) which nonetheless are locked-in.

Nonchanneling transport in the plateaus of Fig. 5 sug-
gests a previously unrecognized class of statistically
locked-in states that are distinct from deterministically
channeling states. Their absence from measurements on
perfect atomic crystals and idealized molecular dynam-
ics simulations suggests that they may result from
quenched disorder in our optically defined potential en-
ergy landscape. The pattern of plateaus reflects symme-
tries in the potential energy landscape and so would not be
affected by the individual potential wells’ shapes [13].
Their statistical nature suggests a possible role for ran-
dom thermal forcing. How disorder gives rise to the dis-
tribution of steps observed in Fig. 5 poses an outstanding
challenge.

Beyond providing an experimental context in which to
study the microscopic mechanisms of kinetic lock-in, the
techniques introduced for this study also constitute a
practical method for continuously fractionating meso-
scopic materials. Particles in a heterogeneous suspension
that interact more strongly with optical traps will be
pushed to one side by an appropriately tuned array of
128301-4
traps. Particles that interact less strongly will pass
through the same array undeflected. The deflected and
undeflected fractions then can be collected in separate
microfluidic channels and passed on to additional stages
of optical traps for further stages of fractionation.
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