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Basing on positive maps separability criterion we propose the experimentally viable, direct detection of
quantum entanglement. It is efficient and does not require any a priori knowledge about the state. For two
qubits it provides a sharp (i.e., ‘“‘if and only if’’) separability test and estimation of amount of
entanglement. We view this method as a new form of quantum computation, namely, as a decision

problem with quantum data structure.
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Quantum entanglement, after playing a significant role
in the development of the foundations of quantum mechan-
ics [1-3], has been recently rediscovered as a new physical
resource with potential commercial applications such as,
for example, quantum cryptography [4], better frequency
standards [5] or quantum-enhanced positioning, and clock
synchronization [6]. On the mathematical side the studies
of entanglement have revealed very interesting connec-
tions with the theory of positive maps [7,8]. The capacity
to generate entangled states is one of the basic require-
ments for building quantum computers. Hence, efficient
experimental methods for detection, verification, and esti-
mation of quantum entanglement are of great practical
importance. Here, we propose an experimentally viable,
direct detection of quantum entanglement which is effi-
cient and does not require any a priori knowledge about the
quantum state. In a particular case of two entangled qubits
it provides an estimation of the amount of entanglement.
We view this method as a new form of quantum computa-
tion, namely, as a decision problem with quantum data
structure.

Suppose we are given n pairs of particles, all in the same
quantum state described by some density operator @, which
is unknown. We need to decide whether the particles in
each pair are entangled or not. From a mathematical point
of view we need to assert whether ¢ can be written as a
convex sum of product states [9],

k
o= Z_Pi la;Xa;| ® B;)XBil, (D

with | ;) and | B;) pertaining to different particles in the
pair, and > ; p; = 1. It is assumed that the Hilbert space
associated with each particle is of finite dimension d (taken
to be the same for the two particles), so that one can always
find k < d°. If @ were known then we could try either to
find the decomposition (1) directly or to use one of the
mathematical separability criteria [8]. For sufficiently large
n we may indeed start with the quantum state estimation,
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however, this involves estimating d* — 1 real parameters of
@, most of which are irrelevant in the context of the
entanglement detection. In the following we describe a
direct method of detecting quantum entanglement without
invoking the state estimation.

We construct a measurement, performed on all copies of
©, which is as powerful in detecting quantum entanglement
as the best mathematical test based on positive maps [7].
(Special cases of the direct detection of entanglement,
restricted to pure states of the combined system, were
discussed by Sancho et al. [10] and by Acin et al. [11].)
The measurement can be viewed as two consecutive physi-
cal operations: first, we construct a transformation which
maps Q into an appropriate state 0’ and, second, we mea-
sure the lowest eigenvalue of @'. This eigenvalue alone
serves as a separability indicator.

A convenient starting point for our construction is the
most powerful, albeit purely mathematical and not directly
implementable, separability criterion proposed to date. It is
based on mathematical properties of linear positive maps
acting on matrices [7]. Let M, be a space of matrices of
dimension d; recall that A : M, — M is called positive if
X = 0implies A(X) = 0 (expression X = 0 means that the
matrix X has a non-negative spectrum). If the induced map
[ ® A is also positive, then A is called completely positive,
and, as such, it represents a physically allowed transforma-
tion of density operators (here | denotes the identity map
on an auxiliary system of any dimension). Using this
terminology the separability criterion reads [7]: © is sepa-
rable if and only if

[l All@) =0, 2

for all positive but not completely positive maps A : M, —
M ; acting on the second particle. In fact it is sufficient to
consider only positive maps A such that the maximum of
Tr A(o) over all g is equal to unity. Other positive maps
differ only by a positive multiplicative factor which does
not affect the condition (2).
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Furthermore, in some cases, instead of scanning all
positive maps, we can choose just one. For example, all
entangled states of two qubits can be detected by choosing
A to be transposition [7,12]. The snag is that positive maps
A, such as an antiunitary transposition, and the correspond-
ing induced maps | ® A cannot be implemented in a labo-
ratory. Thus, the criterion (2) tacitly assumes prior
knowledge of 0. However, there is a way to modify it so
that it becomes experimentally viable without involving
any state estimation.

If we mix in an appropriate proportion [l ® A] with a
depolarizing map that turns any density matrix into a
maximally mixed state then the resulting map can be
completely positive. This is because the lowest negative
eigenvalues generated by the induced map [([®)® (I ®
A)] can be offset by the positive eigenvalues of the maxi-
mally mixed state generated by the depolarizing map. The
most negative eigenvalue —A < 0 is obtained when [(I ®

De(le A)] acts on the maximally entangled state of the
form \/—Zl | 1)]i), where each state | i) pertains to a d*

dimensional subsystem which itself is composed of two d
dimensional parts. Thus the map,

N&hle) = p- 2!

plleAle). 3

is completely positive and therefore physically implement-
able when the induced map [(1 ® [) ® (I'® A)] is positive,
which happens for p = (d*A)/(d*A + 1) [13]. By inserting
the threshold value p = (d*A)/(d*A + 1) into (3) we can
modify the criterion (2) as follows: @ is separable if and
only if for all positive maps A,

d’x
A+ 1
i.e., when the minimal eigenvalue of the transformed state
o' = [1'®A](g) is greater than (d2A)/(d*A + 1). In gen-

eral, for some maps A, the related completely positive
maps | ® ‘® A are not trace preserving and require postselec-

[I®A](e) = 4

N
H(l—l— 1 —4A ) = E(o) =
2
where H(x) is the Shannon entropy. The above formulas
can be derived from the estimations of the concurrence
provided by Verstraete et al. [15].

Suppose for a moment that I'®A is trace preserving,
e.g., the case of transposition. The first part of our entan-
glement detection measurement is accomplished by apply-
1ng I® A to each of the n pairs to obtain n copies of
o =l ®A](Q) Then, following the criterion (4), we
need to measure the lowest eigenvalue of o’

This can be viewed as a special case of the spectrum
estimation and possible approaches depend a lot on par-
ticular physical realizations of @’. Here, we provide two
general solutions. The first one, based on quantum inter-
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tions in their physical 1mplementat10ns Maps such as
I'® A have been referred to as “structural” physical ap-
proximations (SPA) to unphysical maps | ® A. The notion
of SPA was introduced and analyzed recently [13]. Note
that the universal NOT gate [14] can be considered as a first
example of SPA (the one being approximation to one qubit
universal NOT operation).

For example, if we take A to be transposition T (the first
positive map used for detecting entanglement), we obtain

I®I+
+1

In the two-qubit case, where the partial transposition gives
the sharp test for entanglement, we obtain

[1'®T](e) = [ﬂ ®Tle). (5

—~ 2 1
(TeTle) = 51 ®l+ §[|] ® T](o), (6)
which can be represented and implemented as
1 2
§A1 ®A, + 5” ® o, 0.ANo,0o, @)
with the two channels defined as
1 1
Ai(0) =3 Z 000, Ay(Q) 2 Z 000
i=x,y,2 i=0,%,5,2
®)

The map can be implemented by applying selected
products of unitary (Pauli) transformations with the pre-
scribed probabilities. The map is trace preserving; hence it
can be implemented without postselections.

Thus, in order to detect entanglement of an arbitrary
two-qubit state Q it is enough to estimate a single parame-
ter, i.e., the minimal eigenvalue of [1'® 7](0). The state @
is separable if and only if this eigenvalue satisfies Ay, =
%. Let us also point out an extra bonus: A, gives us — A/,
the most negative eigenvalue of [[ ® T](@), which enters
the expression for the upper and lower bounds for the

| entanglement of formation,

H(l 1 - 4227 F A - N))

> (©))

ferometry, is conceptually simple and relies on estimating
d’> — 1 parameters from which the spectrum of @’ can be
calculated (this is a significant gain over the state estima-
tion which involves d* — 1 parameters). The second solu-
tion is a joint measurement on all copies of @’ which gives
directly the estimate of the lowest eigenvalue.

We start with the quantum interferometry, presented
here as a quantum network shown in Fig. 1. A typical
interferometric setup for a single qubit—the Hadamard
gate, phase shift ¢, the Hadamard gate, followed by a
measurement—is modified by inserting in-between the
Hadamard gates a controlled-U operation, with its control
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FIG. 1 (color online). Both the visibility and the shift of the
interference patterns of a single qubit (top line) are affected by
the controlled-U operation. This setup allows one to estimate
TrUp, the average value of U in state p.

on the qubit and with U acting on a quantum system
described by some unknown density operator p. (N.B.
we do not assume anything about the form of p; it can,
for example, describe several entangled or separable sub-
systems.) The action of the controlled U on p modifies the
interference pattern by the factor,

TrpU = ve'?, (10)

where v is the new visibility and « is the shift of the
interference fringes, also known as the Pancharatnam
phase [16]. Formula (10) has been derived, in the context
of geometric phases, by Sjoqvist et al. [17].

The network can evaluate certain nonlinear functionals
of density operators. Indeed, let us choose p to be com-
posed of two subsystems, p = @, ® @, and let U to be the
exchange operator V such that V| )| 8) = | 8)| ) for any
pure states of the two subsystems. The interference pattern
is now modified by the factor TrV (g, ® ¢,) = Tro,0,.
For p = 0 ® ¢ we can estimate Tro?, which gives us an
estimate of > | A?, where A, are the eigenvalues of @ (c.f.
work by Filip on the quantum optical measurement of V
[18]). N.B. Tr? is real hence there is no need to sweep the
phase ¢ in the interferometer; it can be fixed at ¢ = 0.

In general, in order to calculate the spectrum of any m X
m density matrix 0 we need to estimate m — 1 parameters
Tro?, Tr@?, ... Tre™. For this we need the controlled-shift
operation. Given k systems of dimension m we define the
shift V% as

V(k)| ¢1>| ¢2> | ¢k> = |¢k>| ¢1> ] ¢k71>’ (1)

for any states | ¢). Such an operation can be easily con-
structed by cascading k — 1 swaps V. This time, if we
prepare p = ® the interference will be modified by the
factor

Tro® V¥ = Trok = Y AL (12)
i=1

Thus measuring the average values of V¥ for k =
2,3,..., m gives us effectively the spectrum of Q. In par-
ticular, in our case, we obtain the spectrum (and the lowest
eigenvalue) of @' = [1'® A](@) by estimating d*> — 1 pa-
rameters Tro’*, where k = 2 - - - d>. Again, the phase in the
interferometry can be fixed at ¢ = 0.
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The interferometric scheme described above is concep-
tually simple and experimentally viable; however, if the
simplicity of the implementation is not an issue then we
can measure the estimate of the lowest eigenvalue directly.
This requires a join measurement on all of the n pairs. We
use the Keyl and Werner spectrum estimation method [19],
which is based on projections on subspaces invariant under
permutations [20]. In the entanglement detection context it
works as follows. The n copies of the m X m state @' (in
our case m = d*) form an operator on the n-fold tensor
product space which can be decomposed according to
irreducible representations of SU(m), so that each sum-
mand, including multiplicities, is labeled by a Young tab-
leau, i.e., n boxes arranged in rows of decreasing length.
The tableaus give a family of projectors for the spectrum
estimation measurement. The normalized row lengths of
each tableau are taken as estimates of the ordered sequence
of eigenvalues of @'. The probability that the error is
greater than some fixed € decreases exponentially with n
[19]. In our particular case, we are interested only in the
lowest eigenvalue. We modify the Keyl-Werner scheme by
adding together all projectors corresponding to Young
tableaus with the fixed length of the last row. The measure-
ment determined by these projectors gives directly the
estimate of only one parameter — the lowest eigenvalue
of ©’. Such a measurement can be represented as a quan-
tum network implementing projections on the symmetric
and on partially symmetric subspaces (see [21] for the
network projecting on the symmetric subspace).

Our considerations remain valid, with some minor modi-
fications, when 1'® A is not trace preserving. In this
case experimental implementations require postselections,
which result in n’ = nTt[l'® A(p)] copies of normalized
states 1'® A(0)/Tr{1'® A(p)]. The spectrum estimation
procedure is not affected; however, before checking the
condition (4) the lowest eigenvalue has to be rescaled by
the factor Tr[l ® A(@)].

Let us summarize our findings. Given n copies of a
bipartite d ® d system described by some unknown density
operator @ we can test for entanglement either by estimat-
ing @ and applying criterion (2), or, more directly, by
performing the measurements we have just described.
The state estimation involves estimating d* — 1 parameters
of @, most of which are of no relevance for the entangle-
ment detection. The optimal state estimations rely on joint
measurements on all copies of @; however, one can also
construct less efficient but simpler state estimation meth-
ods which involve measurements only on individual cop-
ies. Our more direct, interferometry based, method
requires estimations of only d*> — 1 parameters and joint
operations on d copies of ©’. The most demanding, from
the experimental point of view, is our second method. Itis a
measurement with an outcome which is an estimate of just
one parameter, but, like the optimal state estimation, the
measurement involves joint operations on all copies of @'.
Both direct and indirect entanglement detections have their
own merits. Depending on the context, applications, and
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technologies involved one can choose one or the other.
Note that for two qubits the present interferometric
method provides a sharp entanglement test involving
final measurements of only three (d> —1 =22 —1=3)
observables.

Direct entanglement detections can be employed as
subroutines in quantum computation. For example, one
may consider performing or not performing a quantum
operation on a given quantum system conditioned on
some part of quantum data being entangled or not. In fact
direct entanglement detections can be viewed as quantum
computations solving an inherently quantum decision
problem: given as an input n copies of @ decide whether
o is entangled. Here the input data are quantum and such a
decision problem cannot even be formulated for classical
computers. Nonetheless the problem is perfectly well de-
fined for quantum computers. Finally, let us add that the
method presented here can be easily generalized to cover
all linear maps tests for arbitrary multiparticle entangle-
ment [22] and the so-called k-positive map tests, which
detect Schmidt numbers of density matrices [23]. Further
extension of our method to the case of detecting quantum
entanglement at a distance, i.e., under restrictions of local
operations and classical communication [8], will be con-
sidered elsewhere.

For the sake of completeness we should also mention
here that there is an important theory of multiparticle
observables, called entanglement witnesses, which can
detect quantum entanglement in some special cases (see
[7,8,24,25]). They have positive mean values on all sepa-
rable states and negative on some entangled states.
Therefore any individual entanglement witness leaves
many entangled states undetected. When @ is unknown
we need to check infinitely many witnesses, which effec-
tively reduces this approach to the quantum state estima-
tion. Still, in the context of our method, witnesses are
useful as they define positive maps which can be used in
our test.

To conclude, we have demonstrated that direct and
physically implementable methods of entanglement detec-
tion are possible. They are equivalent to the most powerful
mathematical separability criteria known to date [7]. We
have described their possible realizations in the generic
terms of quantum gates and networks. These generic
components can be implemented using several experimen-
tal techniques ranging from trapped ions to quantum
dots [26].
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