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Disorder Induced Quantum Phase Transition in Random-Exchange Spin-1=2 Chains
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We investigate the effect of quenched bond disorder on the anisotropic antiferromagnetic spin-1=2
(XXZ) chain as a model for disorder-induced quantum phase transitions. We find nonuniversal behavior of
the average correlation functions for weak disorder, followed by a quantum phase transition into a strongly
disordered phase with only short-range xy correlations. We find no evidence for the universal strong-
disorder fixed point predicted by the real-space renormalization group, suggesting a qualitatively different
view of the relationship between quantum fluctuations and disorder.
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[26], now offer a framework to investigate the relevance of
the IRFP to realistic one-dimensional spin systems [27]. In

try-adapted high-accuracy DMRG calculations for a num-
ber of randomly selected replicas �i. We verified the
The existence and nature of quantum phase transitions
(QPTs) [1–3] has in recent years emerged as one of the
most interesting aspects of low-dimensional quantum sys-
tems. QPTs arise from the subtle interplay between short-
range interactions on one hand and quantum fluctuations
on the other [4]. Since the latter are particularly strong in
one dimension, quantum spin chains have emerged as a
generic model to investigate QPTs [5–8]. The additional
presence of disorder has profound effects on the properties
of low-dimensional systems [9,10] as it competes with the
subtle effects of quantum fluctuations. Its effect on QPTs
has been the subject of recent intense and controversial
discussion [7,8,11–18]. Recent experimental advances now
permit the investigation of the magnetic properties of nano-
scale chains of magnetic atoms (L � 50) on the steps of
metallic surfaces [19].

In one dimension, the strong-disorder renormalization
(SDRG) [20,21] group offers potentially exact results for a
variety of models. Of particular interest is the prediction of
a universal infinite randomness fixed point (IRFP) for
disordered antiferromagnetic spin chains. In many sys-
tems, SDRG studies suggest a random-singlet (RS) phase
[22–24] as the ground state for fairly general disorder. In
this RS phase, the average spin correlations are predicted to
obey a universal isotropic power-law decay, jhS�i S

�
j ij �

ji� jj�2�� � x; z	, where the overbar denotes a configura-
tional average over many random chains (replicas). The
Luttinger (or spin-liquid) continuum of critical ground
states of the ordered chain is thus predicted to collapse to
a single point. Numerical results consistent with the RS
picture were reported for relatively short (N 
 18) XXZ
chains [12] and also for long XX chains (� � 0) [13] with
couplings uniformly distributed in [0,1]. Recently, some
studies suggest the relevance of such a fixed point for the
q-state quantum clock model and the quantum Ashkin
Teller model [8], while others dispute its existence [6,25].

Recent numerical advances, in particular, the develop-
ment of the density matrix renormalization group (DMRG)
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this Letter, we investigate the influence of exchange dis-
order on the anisotropic spin-1=2 Heisenberg chain (XXZ
model), one of the best-known model systems for QPTs in
one dimension. We find a qualitatively different scenario
for the interplay of quantum fluctuations and disorder. Our
results indicate that the spin correlations do not obey the
universal parameter independent decay law suggested by
the RS picture. Instead we find a disorder-induced QPT for
finite disorder strength, whose nature can be illustrated by
an exactly solvable model.

We present results of a density matrix renormalization
group study of antiferromagnetic XXZ chains with ran-
domness in the transverse nearest-neighbor coupling,

H � J
XN�1

i�1

��i�S
x
i S

x
i�1 � Syi S

y
i�1	 � �SziS

z
i�1 (1)

(J > 0), where the anisotropy parameter � � 0 controls
the relative strength of the quantum fluctuations. In the
homogeneous system (�i � 1), the ground state of (1)
shows long-range order for � > 1 (Ising regime), whereas
for � 
 1 (critical regime) the spin correlations decay
algebraically to zero as jhS�i S

�
j ij � ji� jj��� with nonun-

iversal decay exponents [28]:

�x � ��1
z � 1� ��1 arccos�: (2)

The introduction of quenched randomness brings about
subtle changes in the ground state. For reasons of better
numerical control of replica averages, we used a bounded
probability density p��	 � 1

2W��W � j�� 1j	: We inves-
tigated chains of length up to L � 400 with a finite-size
DMRG algorithm and ensured that the ground state and
correlations hS�i S

�
j i could be determined with consistent

accuracy for arbitrary choices of �i. We noted that for long
chains the standard DMRG procedure tends to spontane-
ously break the local Sz reversal symmetry. We ensured
that the resulting data for the correlation functions were
nevertheless correct by comparing with explicitly symme-
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FIG. 1. Doubly logarithmic plots of replica averaged (top)
hS�0 S

�
r i and (bottom) hSz0S

z
ri for � � 0:5 and various disorder

strengths W. The z-correlation functions decay algebraically, the
degree of correlation increases with disorder strength, while x
correlations decay algebraically for W < 1, but exponentially for
W > 1.
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accuracy of the correlation functions and energies by com-
paring with exact data for XX (� � 0	 chains which can be
mapped to noninteracting lattice fermions. For critical
systems, we investigated finite-size effects on the estimates
of the decay exponents �x and �z for 0 
 � 
 1. For
ordered chains with periodic boundary conditions,
DMRG results for hSz0S

z
L=2i were in good agreement with

the known long-range order parameter for � � 1 [29] until
the chain length became significantly shorter than the
correlation (or saturation) length [30] of the system. This
suggests that chains of length L � 80 are sufficient
to determine the long-range behavior of the correlation
function.

We then performed DMRG calculations for a large
number of replicas each for various values of � and W.
The number of replicas computed varied from 250 for
small W, where replica expectation values fluctuate little,
to more than 1000 for large W. We have not gathered
replica averaged data for the XX model by DMRG as the
correlation functions for a small set of replicas showed
perfect numerical agreement between DMRG and re-
sults from exact diagonalization for chain lengths of up
to L � 160.

Replica-averaged correlation functions in the critical
and Ising regime are shown in Figs. 1 and 2, respectively.
The data demonstrate qualitatively different behavior for
small and large values of the disorder W. For � 
 1 and
W 
 1, both x and z correlation functions decay algebrai-
cally with exponents that depend on � and W. Fitted to
additional exponential components and finite offsets
jhS�i S

�
j ij � A� ji� jj��� exp���ji� jj	, the data show

negligible inverse correlation lengths � and offsets A for
small W and �. The decay of the x correlation accelerates
with growing disorder W, whereas that of the z correlation
decelerates. The values of the decay exponents �x and �z
as a function of W are shown in Fig. 3(a), indicating a
continuous change of both exponents from their values for
ordered chains W � 0, in violation of the prediction of the
SDRG. To confirm this conclusion, we have computed the
replica averaged (Nrep � 100) xx-correlation function for
W � 0:1, � � 0:5, and L � 120, 240, 320, and 400. The
correlation functions for the first 75% of the spins for each
L are shown in Fig. 4. All data can be fitted with a single
power law with exponent �x � 0:96� 0:02 � 2 consis-
tent with our results for L � 80.

For W > 1, the x-correlation functions decay exponen-
tially in both the Ising and the critical regimes. The inverse
correlation length of the x correlation function is shown in
Fig. 3(b). The data is consistent with a crossover to ex-
ponential decay at W � 1 with significant finite-size ef-
fects for W > 0:8, in particular, in the Ising regime. In the
Ising phase (� > 1), the z correlation functions continue to
decay to a finite value for large separations [see Fig. 2
(inset)].

The nature of the transition at W � 1 is explained by a
simple exactly solvable model, defined by the bimodal
127202-2
distribution,

p��	 � p���� 1	 � �1� p	���� 1	; (3)

in the general Hamiltonian (1) with �< 1. The ground
state spin correlations of this model are related to the
known correlations [28] of the homogeneous chain �p �
0	 by a simple gauge transformation [31,32]. Consider a
single replica, i.e., one configuration of �i drawn from the
distribution (3) for an open chain. By a suitable product U
of � rotations exp�2i�Szi 	 about the local Sz spin axes, the
disorder may be gauged away, i.e., ~HH � UHUy describes a
configuration with �i � 1. As the z spin components are
invariant under U, the z correlations of the disordered
system are identical to those of the homogeneous system.
In contrast, a product of two x spin components acquires a
string of random signs:

USxi S
x
i�rU

y � Sxi S
x
i�r

Yi�r�1

l�i

�l: (4)

The disorder average of (4) simply yields the x correlation
of the homogeneous system, multiplied by �1� 2p	r.
The decay of the z correlation thus remains algebraic,
whereas the x correlation function is modified by an
127202-2
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FIG. 2. Logarithmic plots of replica averaged correlation
functions in the Ising regime (� � 1:5) for various disorder
strengths W. The x correlations decay algebraically for W < 1
and exponentially for W > 1, z-correlation functions saturate at
a finite value that increases with the disorder strength (inset).

0.1 0.5 0.8 0.95 1.21.1 1.3
W

0.0

0.1

0.2

0.3

1/ξ

∆=0.2
∆=0.5
∆=0.8
∆=1.5

(b)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
w

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

η

(a)

FIG. 3. (a) Exponents � for the algebraic decay of the x and z
correlation functions in the critical regime �< 1. In contrast to
the predictions of the SDRG, the exponents change continuously
from their (finite system) values with no disorder. Circles,
diamonds, and squares denote � � 0:2, 0.5, and 0.8, respec-
tively. Open symbols correspond to �z and filled symbols to �x.
(b) Inverse correlation length for the decay of the x correlation
functions for various � as a function of W. For W > 1, all data
are consistent with the results for the exactly solvable model
(heavy line).
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exponentially decaying factor, with a correlation length
diverging with critical exponent equal to unity at the two
quantum critical points pc � 0; 1:  x � 1=�2jp� pcj	.
Applied to the probability density used in the DMRG
calculations, this argument yields p � �W � 1	=�2W	
and  �1 � lnW for W > 1 [heavy solid line in Fig. 3(b)].
For � � 0, data for larger systems are available [32] and
the crossover from  �1 � 0 to  �1 � lnW is more clearly
visible.

In the limiting cases that are accessible by alternate
techniques, our results are in good agreement with both
exact data for W � 0 and numerical diagonalization results
[32] for long (N 
 256) XX chains (see also [13]). The
latter also display clear deviations from the IRFP behavior
predicted by the SDRG. For the z correlation, an r�2 decay
with the corresponding finite-size scaling behavior [33]
remains perfectly intact from W � 0 up to W � 2: The
static z structure factor is linear in the wave vector q and
independent of W. In contrast, the x correlation does not
show finite-size scaling, and the static x structure factor is
neither linear nor W independent. The x correlation decays
progressively faster asW grows. The data may be fitted to a
power-law as long as W < 1, but with an exponent signifi-
cantly smaller than the value of 2 predicted for the RS
phase. For W > 1, the decay is exponential, with an in-
verse correlation length proportional to the fraction of
negative � (as in the exactly solvable model above).

Combined, these results suggest a qualitative revision of
the influence disorder is thought to have on quantum spin
chains. No signs of attraction to the IRFP (with universal
and isotropic algebraic decay of the spin correlation func-
tions) predicted by the SDRG were observed in our study
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of finite chains of length up to L � 400. Instead, we
observe a disorder-driven quantum phase transition at W �
1 for 0 
 � 
 1, from a spin-liquid phase with algebrai-
cally decaying correlations (with nonuniversal exponents)
at W < 1 to a different phase with exponential decay of the
x correlations. These observations suggest to critically
reexamine the applicability of the SDRG and to investigate
the possible existence of a crossover length scale beyond
which the IRFP emerges as relevant. Recent experiments
permit the controlled assembly of finite monoatomic
chains of magnetic atoms [19], which may lead to a direct
127202-3
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FIG. 4. Doubly logarithmic plots of replica averaged hS�0 S
�
r i

for � � 0:5 and W � 0:1 for L � 120 (circles, �x � 0:994),
L � 240 (squares, �x � 0:958), L � 320 (triangles, �x �
0:962), and L � 400 (diamonds, �x � 0:959) plotted for 10<
r < 0:75L. The solid line is a fit to the L � 400 data, the dashed
line the SDRG prediction (prefactor adjusted to match r � 10
data). Only one-eighth of each data set is shown for clarity. The
exponents of power-law fits for the individual data sets are given
above; they are consistent with �x � 0:96� 0:01 for L > 120.
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experimental test of our prediction. We also note that for
L � 400 the absolute value of the correlation function has
dropped by almost 2 orders of magnitude. As a result, a
possible crossover to IRFP behavior on larger length scales
may be difficult to access experimentally.

For nonbounded disorder, where fluctuating signs of the
couplings are present with varying probability for any W,
one may anticipate the existence of a crossover length scale
where algebraic decay crosses into exponential decay as a
function of system size that may be observable by studying
long, but finite, chains. DMRG studies for Gaussian dis-
order, for which replica averages are much more difficult to
converge, are presently under way to explore this scenario.
The results of the present study are directly applicable to
systems where a crystal field or easy plane generates a
natural anisotropy. Extrapolating from both limits, they
suggest the continued existence of critical behavior for
weak isotropic disorder in the isotropic model, a scenario
that we will investigate more thoroughly in the future.
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Rev. Lett. 83, 632 (1999).

[11] A. Saguia, B. Boechat, and M. Continentino, Phys. Rev. B
62, 5541 (2000).

[12] S. Haas, J. Riera, and E. Dagotto, Phys. Rev. B 48, 13 174
(1993).

[13] P. Henelius and S. M. Girvin, Phys. Rev. B 57, 11 457
(1998).

[14] K. Uchinokura and T. Masuda, J. Phys. Soc. Jpn. Suppl. A
69, 287 (2000).

[15] K. Kato, S. Todo, K. Harada, N. Kawashima, S. Miyashita,
and H. Takayama, Phys. Rev. Lett. 84, 4204 (2000).

[16] R. Kotlyar and S. D. Sarma, Phys. Rev. Lett. 86, 2388
(2001).

[17] H. Rieger, R. Juhász, and F. Iglói, Eur. J. Phys. B 13, 409
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[32] J. Stolze, H. Röder, and G. Müller (unpublished).
[33] M. Karbach, K.-H. Mütter, and M. Schmidt, Phys. Rev. B

50, 9281 (1994).
127202-4


