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We construct integrable generalizations of the elliptic Calogero-Sutherland-Moser model of particles
with spin, involving noncommutative spin interactions. The spin coupling potential is a modular function
and, generically, breaks the global spin symmetry of the model down to a product of U�1� phase
symmetries. Previously known models are recovered as special cases.
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The starting point is the spin-Calogero system with
classical U�n� degrees of freedom. This system can be

tions, coordinate space translations, and global spin rota-
tions:
1. Introduction.—The inverse-square interacting par-
ticle system [1–3] and its spin generalizations [4–9] are
important models of many-body systems, due to their exact
solvability and intimate connection to spin chain systems
[10–14], two-dimensional Yang-Mills theories [15–17] etc.
Reference [18] is a classic review, while [19,20,21] present
newer different perspectives.

The prototype of these models is the spin-Calogero
(‘‘rational’’) scattering model of particles on the line carry-
ing U�n� spin and interacting with two-body inverse-square
potentials with a U�n�-invariant spin coupling. Most other
models can be obtained as appropriate reductions of this
model, taking advantage of its discrete or continuous sym-
metries [22]. In particular, generalizations involving U�n�
noninvariant interactions can be obtained this way, recov-
ering the trigonometric models derived in [23,24] and
extending them to the elliptic case [22].

An unrelated development has been the recent progress
in noncommutative field theory and matrix models. Spatial
noncommutativity can be traced back to Heisenberg and
naturally arises in lowest Landau level physics [25]. Its
current manifestation originates in matrix, string, and
membrane theory [26,27] and came into focus with the
work of Connes, Douglas, and Schwartz [28].

So far these two fields remained unrelated. In this Letter
we show how they can be cross-fertilized by borrowing
notions of noncommutative geometry and applying them in
the reduction scheme of the Calogero model to obtain a
new integrable elliptic model involving non-U�n� invariant
noncommutative spin interactions. Such a modification of
the spin interaction may serve to test the ‘‘flavor stiffness’’
of the original spin model, to stress the degeneracy struc-
ture of the energy spectrum and to identify universality
features of this class of models.

2. The reduction scheme.—The basic technique that we
will use consists of reducing a system of infinitely many
particles with spin to a finite system with generalized
interactions. The reader should refer to [22], and especially
to the elliptic case with spin, for a more detailed descrip-
tion of the method.
0031-9007=02=89(12)=126403(4)$20.00
obtained, for instance, from the model in [4,5] (which
can itself be obtained as a reduction of a Hermitian matrix
model [29] into nontrivial angular momentum sectors) by
redistributing the global U�N� degrees of freedom of this
model into individual particle spins or, alternatively, from
the infinite-volume classical limit of the spin model de-
rived and solved in [16]. The Hamiltonian for N particles
reads

H �
XN
i�1

1

2
p2
i �

1

2

X
i�j

tr�SiSj�

x2ij
: (1)

xi and pi are one-dimensional canonical coordinates and
momenta; Si are a set of independent classical U�n� spins
of rank one and length ‘, that is, n� n rank-one Hermitian
matrices satisfying

tr�Si�2 � ‘2 (2)

and with Poisson brackets

f�Si�ab; �Sj�cdg � �i�ij	�Si�ad �cb � �ad �Si�cb
: (3)

Such spins can be realized in terms of oscillators [16]:

�Si�ab � �AAa
i A

b
i ; a; b � 0 . . . n� 1; (4)

where �Aa
i ; �AA

a
i � are a set of nN independent classical

harmonic oscillator canonical pairs with Poisson brackets:

fAa
i ; �AA

b
j g � i�ij �ab; (5)

and satisfying the constraint
X
a

�AAa
i A

a
i � ‘ for all i: (6)

In the above model we can analytically continue the
coordinates xi and momenta pi � _xxi to the complex plane.
The integrability and solvability of this model trivially
extends to the complex case. Such extensions will be
useful, provided that we can identify a real subsystem,
which will be the physical system of interest.

The Hamiltonian H is invariant under particle permuta-
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i ! pN�i�; xi ! xi � c; Si ! USiU�1; (7)

where pN is an element of the permutation group SN , c is a
constant complex parameter, and U is a constant U�n�
matrix. We can arrange, therefore, for special initial con-
figurations that are invariant under some combination of
the above symmetries and be sure that these conditions will
be preserved in time.

We shall choose the configuration to be a replication of
N real coordinates over an infinite complex lattice with
periods c1 and c2. The N particles effectively live on the
real coordinate of a complex torus. The total number of
particles on the covering space is, thus, infinite and we can
parametrize them with the triplet of indices �i;m; n�, where
i � 1; . . .N labels the particles in each cell and m; n 2 Z
parametrize the cell. Shifts in m and n are elements of the
(infinite) permutation symmetry of the system. The kine-
matical variables are chosen to obey

xi;m�1;n � xi;m;n � c1; pi;m�1;n � pi;m;n; (8)

xi;m;n�1 � xi;m;n � c2; pi;m;n�1 � pi;m;n; (9)

ensuring that we are dealing with lattice copies. This
means

xi;m;n � xi �mc1 � nc2; pi;m;n � pi: (10)

The above conditions, being an invariance under combined
permutations and translations, are dynamically preserved.
To also preserve the condition that xi are real, we should
impose invariance under the imaginary parity transforma-
tion x ! x
. Choosing c1 real, the only possibilities for c2
are

c2 � c
2 � 0 or c2 � c
2 � c1: (11)

The first choice (c2 imaginary) leads to an orthogonal
lattice, while the second choice leads to a rhombic lattice.

To ensure full preservation of the lattice structure, we
should also impose appropriate periodic conditions for the
spins. In this, we can take advantage of the global spin
symmetry of the system and impose

Si;m�1;n � USi;m;nU�1 Si;m;n�1 � VSi;m;nV�1; (12)

with U and V two constant matrices. That is, spins can pick
up U�n� transformations as they move around the cycles c1
or c2. Consistency requires that Si;m�1;n�1 be uniquely
determined irrespective of the order of increase of the
indices m and n. That is,

UVSi;m;nV
�1U�1 � VUSi;m;nU

�1V�1; (13)

which implies

	U�1V�1UV; Si;m;n
 � 0: (14)

For this to hold for all generic Si we must require
U�1V�1UV � ! to be proportional to the identity matrix.
Clearly ! satisfies det�!� � !n � 1, so we obtain
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UV � !VU; ! � ei2���=n�; (15)

with � an integer 0 � � < n. U and V then satisfy Weyl’s
braiding condition which characterizes a noncommutative
(‘‘quantum’’) torus [30].

The spin matrices Si;m;n are now expressed as

Si;m;n � UmVnSiV
�nU�m � VnUmSiU

�mV�n: (16)

Inserting the expressions (10) and (16) in the Hamiltonian
(1) we obtain the Hamiltonian of the reduced system. As
usual, the resulting Hamiltonian has an infinite factor, due
to the summation of the Hamiltonians of the infinitely
many identical cells over the complex plane. Dropping
this trivial infinity, the reduced Hamiltonian includes the
kinetic terms of the fundamental cell and the interaction
potential of particles in this cell with all other particles in
all cells:

H �
XN
i�1

1

2
p2
i �

1

2

X
i;j

X1
m;n��1

tr�UmVnSiV
�nU�mSj�

�xij �mc1 � nc2�2
;

(17)

where we adopted the notation xij � xi � xj.
3. Noncommutative spin interaction potentials.—To

proceed, we must identify the possible forms of U; V. We
need the irreducible representations of the relation (15).
Call k the greatest common divisor of � and n. Then n �
km and � � k�, for relatively prime m; �. The irreducible
representations for U; V are m-dimensional ‘‘clock’’ and
‘‘shift’’ matrices. By a global U�n� spin transformation we
can diagonalize either of U; V. Choosing U diagonal, the
general form of U and V will be the direct sum of k of the
above irreducible representations:

U � diagfei�0 ; . . . ei�k�1g � u;

V � diagfei�0 ; . . . ei�k�1g � v;
(18)

where �q; �q are arbitrary phases, determining the
Casimirs Um and Vm, and u; v are the m-dimensional clock
and shift matrices

u!" � !! �!"; v!" � �!�1;"�modm�;

!; " � 0; . . . m� 1:
(19)

So the acceptable U and V depend on 2k arbitrary
parameters.

To take advantage of the form (18) for U; V we partition
Si into k2 blocks of dimension m�m each by using the
double index notation

�Si�ab � �Si�
pq
!"; a � pm� !; b � qm� ":

(20)

The U�n� Poisson brackets in this notation are

f�Si�
pq
!"; �Sj�

rs
%�g � �i�ij	�Si�

ps
!� �%" �rq

� �!� �ps �Si�
rq
%"
: (21)

The m; n-sums that appear in (17) then become
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X
m;n;!;";p;q

�Si�
pq
!�n;"�n �Sj�

qp
";!

e�im�pq�in�pq !m�!�"�

�xij �mc1 � nc2�
2 ;

(22)

where the term m � n � 0 is omitted if i � j.
The above gives a potential interaction between particles

i and j in the form of a modular function in xij which
depends on the spin components of particles i and j. To
make the noncommutative character of the spin interaction
manifest, we perform a change of basis in the spin states
and define

�~SSi�
pq
!" �

X
&

!	&��!=2�
" �Si�
pq
!�&;&: (23)

This is essentially a discrete Fourier transform in the sum
of the !;" indices of Spq!". (Note that, for m odd, ~SSpq!" is
actually antiperiodic in the index ! if " is odd, and vice
versa. Although we could have defined a properly periodic
matrix, we prefer this slight inconvenience in order to
make the ensuing formulas more symmetric.) In fact, it
will be convenient to assemble the double indices �!;"�
and �m; n� into vectors ~!! and ~mm. Similarly, we define ~cc �
�c1; c2� and ~��p � ��p; �p�.

The Poisson brackets of the ~SSi are found from (21)

f�~SSi�
pq
~!! ; �~SSj�

rs
~""
g � i�ij	!� ~!!� ~""�=2 �ps �~SSi�

rq

~!!� ~""

�!�� ~!!� ~""�=2 �rq �~SSi�
ps

~!!� ~""

: (24)

This is a structure extending the Moyal (star-commutator)
algebra, the exponent of ! being the cross product of the
discrete ‘‘momenta’’ ~!! and ~"". For �rs� � �pq�, in particu-
lar, it becomes the torus Fourier transform of the Moyal
bracket

f�~SSi�
pq
~!! ; �~SSj�

pq
~""
g � i�ij	!1=2 �!��1=2�
	 ~!! � ~""
!�~SSi�

pq

~!!� ~""
;

(25)

where

	x
! �
!x=2 �!��x=2�

!1=2 �!��1=2�
(26)

is the !-deformation of x. This is the so-called trigono-
metric algebra with periodic discrete indices [31].

Finally, by inverting (23) and substituting in (22), the
potential energy W in terms of the ~SSi acquires the form

W �
X
i;j

X
~!!;p;q

�~SSi�
pq
~!! �~SSj�

qp
� ~!!W

pq
~!! �xij�: (27)

The above includes two-body interactions, for i � j, as
well as spin self-couplings, for i � j, arising from the
interaction of each particle with its own images in different
cells. The two-body potential Wpq

~!! �x� is

Wpq
~!! �x� �

1

m

X
~mm

! ~!!� ~mm ei ~��pq� ~mm

�x� ~cc � ~mm�2
; (28)

while the spin self-coupling ~WWpq
~!! is
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~WWpq
~!! �

1

m

X
~mm� ~00

! ~!!� ~mm ei ~��pq� ~mm

� ~cc � ~mm�2
� lim

x!0

�
Wpq

~!! �x� �
1

mx2

�
:

(29)

If the above potentials were independent of the U�n�
indices ~!! and p; q, the sum over U�n� indices in the
potential energy expression (27) would simply be a U�n�
trace and would give the U�n�-invariant coupling between
the spins of particles i and j multiplying the standard
Weierstrass potential of the elliptic Calogero model. In
the present case, however, the above potential is spin-
dependent and breaks U�n� invariance, introducing a star-
product twist in the indices ~!! and phase shifts ~�p�p in the
indices p; q. Generically, the U�n� invariance of the origi-
nal model is broken down to an Abelian U�1�k, amounting
to the transformation

�Si�
pq
!" ! ei’p �Si�

pq
!"e

�i’q : (30)

If ~��p are equal for k0 values of p, the remaining symmetry
U�1�k

0
is enhanced to U�k0�, corresponding to mixing the

corresponding p-components.
The case ! � 1, ~��p � 0 reduces to the standard spin-

elliptic Calogero-Moser model. The case m � 1 (and thus
! � 1) reproduces the U�n�-noninvariant model intro-
duced in [22]. The general case with ! � 1 is a new
classical integrable model of the spin-Calogero type.

The potentials can be expressed in terms of theta-
functions. Wpq

~!! �x� is a modular function on the complex
torus �c1; c2� with quasiperiodicity

Wpq
~!! �x� c1� � e�i�pq�	�2���=m
!2Wpq

~!! �x�;

Wpq
~!! �x� c2� � e�i�pq�	�2���=m
!1Wpq

~!! �x�:
(31)

It has a double pole at x � 0, with principal part

Wpq
~!! �x� �

1

mx2
�O�x0� (32)

and no other poles in each cell. These properties uniquely
define Wpq

~!! �x� and allow for an expression in terms of
theta-functions. We put

Wpq
~!! �x� � A!�i�x=c1�e�i�x=c1��pq

�
#1	

�
c1
�x�Q1�
#1	

�
c1
�x�Q2�


#1�
�
c1
x�2

; (33)

where Q1;2 are the as yet unknown zeros of Wpq
~!! �x� and the

theta-functions appearing above have complex period T �
c2=c1. This has the right quasiperiodicity under x ! x�
c1. In order to also have the right quasiperiodicity under
x ! x� c2, Q1;2 must satisfy

Q1 �Q2 �
~��ab � ~cc
2�

�
�
m

~!! � ~cc (34)

and to have the right behavior around x � 0 we must
further have
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#0
1�

�
c1
Q1�

#1�
�
c1
Q1�

�
# 0
1�

�
c1
Q2�

#1�
�
c1
Q2�

� �i
�ab

�
� 2i

�
m
!1; (35)

A �
�2 #0

1�0�
2

mc21 #1�
�Q1

c1
�#1�

�Q2

c1
�
: (36)

Equations (34) and (35) above determine Q1 and Q2, while
(36) in turn determines A.

The sums appearing in (28) and (29) are in general
convergent, due to the presence of the phases. For ! �
1, however, the phases are absent and terms with p � q
have an additive ambiguity due to the need for regulariza-
tion for the expression (28). In the theta-function expres-
sion this manifests in the fact that the equations for Q1;2
(34) and (35) are satisfied for any Q1 � �Q2. By applying
the addition formula

#1�x�Q�#1�x�Q�#4�0�
2 � #1�x�2#4�Q�2

� #4�x�
2#1�Q�2 (37)

this is seen indeed to amount to an arbitrary additive
constant to the expression for Wpp�x�. The same holds
for terms p; q for which ~��pq � 0. Such arbitrariness,
however, corresponds to trivial redefinitions of the model
by addition of constants of motion. This is explained in
[22] and will not be elaborated here.

4. Conclusions and open questions.—In conclusion, we
identified an integrable generalization of the elliptic spin
model which breaks the spin U�n� invariance and promotes
the potential to a modular function introducing noncom-
mutative spin twists. (Quantum generalizations of elliptic
spin models have appeared recently, but with U�n� invari-
ant interactions [32].)

There are clearly many issues that deserve further study.
The conserved quantities and Lax matrix of this model can,
in principle, be obtained from the corresponding quantities
of the unreduced model; this was done, e.g., in [22] for a
specific case. A derivation in the present case would be
useful. Further, the modular potential involves implicitly
defined Q1;2; a more explicit and symmetric expression
would be desirable.

The properties of the spin interaction should also be
clarified. In particular, it would be interesting to see if
some deformation of U�n� can be identified as a dynamical
symmetry.

Finally, the quantum mechanical extension of the model
is, perhaps, the most interesting and pressing question.
This is not trivially accessible by the method used here
since, in general, the constraints implied by the phase space
restrictions are second class and we cannot carry over the
solution of the unrestricted quantum model and apply the
constraints as operator relations on the Hilbert space.
The above issues remain interesting topics for future
investigation.
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