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in Two Loop Order

R. Folk1 and G. Moser2

1Institute for Theoretical Physics, University of Linz, Austria
2Institute for Physics and Biophysics, University of Salzburg, Austria

(Received 1 February 2002; published 27 August 2002)
125301-1
We calculated in two loop order the field theoretic renormalization group functions taking into
account the decomposition of the dynamical vertex functions into the static vertex functions and
genuine dynamical parts. The observation of this nonperturbative structure simplifies the theoretical
expressions obtained by perturbation theory considerably and makes tractable a complete two loop
calculation of the critical dynamics near the superfluid transition of 3He-4He mixtures (model F0). As a
result, we obtain various transport coefficients, which govern the nonasymptotic and nonuniversal
temperature dependence. We also correct long-standing results for the critical dynamics of the super-
fluid transition in pure 4He (model F) and for the dynamics of structural or magnetic phase transitions
(model C).
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terms exploding loop expansion. We have reached this by
(i) separating strictly statics from dynamics within the

parameter is the only density, see for notation [1]), this is
the well-known 	4 Ginzburg-Landau-Wilson functional
Universality in dynamical critical phenomena has led
to a series of models [1] labeled by the capital letters
between A and J, which describe the critical dynamics in
different physical systems such as ferromagnets and anti-
ferromagnets, pure and binary fluids, and superfluids.
Comparison with experiment has reached a high level
for the gas-liquid transition and most prominently for the
superfluid transition. For both systems, zero gravity ex-
periments have been performed (see, e.g., NASA project
‘‘Fundamental Physics in Space’’ [2]). It has turned out
that for several different reasons two loop calculations are
necessary on the theoretical side to reach the experimen-
tal accuracy (both for universal properties as well as for
the nonasymptotic nonuniversal behavior). This holds for
the measurements of transport coefficients such as the
shear viscosity in fluids [3] and the thermal conductivity
in 4He near the superfluid transition [4]. In the latter case,
a complete two loop field theoretic renormalization group
calculation has been performed [5].

The situation in 3He-4He mixtures was less favorable
although a lot of experimental results mostly by the group
of Meyer are available (see references in [6]). Thus far, the
critical dynamics has been treated [6] in a combination of
a one loop model with static couplings to the secondary
densities of entropy and concentration (model F0) and the
two loop terms without these couplings (model E0 [7]).
This approximation was used for a comparison with the
temperature dependence of the three transport coeffi-
cients—thermal conductivity, thermal diffusion ratio,
and mass diffusion. The interrelation between the three
coefficients allows a much better significant test of the
theory.

In order to improve the situation, one has to look for a
new input into the straightforward but from the amount of
0031-9007=02=89(12)=125301(4)$20.00 
expression for the vertex functions and (ii) introducing
‘‘summed up’’ static quantities such as the correlation
length as performed in [8]. This makes the calculation
tractable, and especially item (i) leads to further checks of
the calculation and thus a high probability of the correct-
ness of the results obtained.

Thus, we achieve complete consistent two loop order
results for model F0 and as a corollary for the field
theoretic functions for model F [5] and model C (aniso-
tropic magnets and structural transitions) [9]. These re-
sults are corrected by our calculations, while for model C
they agree with those in Ref. [10]. The general method
presented in this Letter has also been applied to calculate
the field theoretic functions for other models [11,12].

Let us consider densities ai�x� which may be the order
parameter 	 and other conserved densities 
j necessary
for describing the dynamics of the slow system consid-
ered. Then the dynamic equations of the Ma and
Mazenko type [13], which are usually used in dynamic
renormalization group theory, have the form

@ai
@t

�
X
j

�kBTfai; a
�
j g 	 Lij


�H�fag�
�a�j

� �i: (1)

The first sum at the right-hand side of the above equation
contains the reversible contributions, which are deter-
mined by a set of generalized Poisson brackets fai; a�j g
between the densities. The second term represents the
dissipative part determined by a set of Onsager coeffi-
cients Lij, where Lij � �ij for nonconserved densities
and Lij � 	�ijr

2 for conserved densities. The �i are
stochastic forces. H�fag� is a convenient static functional
including the static critical behavior of the considered
system. For instance, in models A, B, and J (the order
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with the fourth order coupling u. The other models in-
clude additional conserved densities of Gaussian order
(models E,G, andH) or additional cubic terms � between
the square of the order parameter and the other densities
(models C, F, and F0). With methods of group theory, it is
possible to introduce generalized Poisson brackets in a
systematic manner [14]. The Poisson brackets are defined
in a way that the corresponding reversible hydrodynamic
equations are reproduced. In the same way, the Onsager
coefficients are introduced in accordance to the consid-
ered hydrodynamics. With a Gaussian static functional
H �

R
ddx 1

2

P
ml am�x��mlal�x�, Eq. (1) reproduces the

hydrodynamic equations. Additional nonlinear terms en-
ter Eq. (1) only via higher order terms in the static func-
tional. Thus, the hydrodynamic structure in the brackets
in (1) is also conserved with these contributions. Hence,
we expect that the hydrodynamic basic structure is con-
served in the Fourier transformed dynamic vertex func-
tions when the statics is treated appropriately. More
specifically (for notation and definitions, see [15]), we
expect that the separate appearance of the static vertex
function in the dynamic vertex function known from zero
and one loop order is valid also in higher orders, and one
can write them most generally as functions of the corre-
lation length �, the wave vector k, and the frequency !:

�ai~aaj��; k;!� � 	i!
ai~aaj��; k;!�

�
X
m

��st�
aiam��; k��

�d�
am~aaj

��; k;!� ; (2)

with the static vertex function ��st�
aiam . This structure jus-

tifies the method used thus far to identify the hydrody-
namic transport coefficients with the vertex functions.
Indeed, we verified the above structure of the vertex
functions in two loop calculations for all models (A to
J) mentioned. We have performed the dynamic perturba-
tion expansion and used then exact algebraic rearrange-
ments of the expressions to obtain the structure in (2). We
want to emphasize that these rearrangements are quite
nontrivial and that they require some calculational ex-
pense since the structure is not valid for the topological
different contributions of the loop expansion. Only the
sum of all contributions has this structure. We then
obtain the two functions 
ai~aai and ��d�

am~aaj
in a relatively

lucid form.
In addition, general relations for other vertex func-

tions, necessary for the calculation of the dynamic scat-
tering functions, could be proofed in two loop order,

�~		 ~		��; k;!� � 	2Re�
	 ~		��; k;!��
�d�
	 ~		

��; k;!�
 (3)

and for the diagonal part of the secondary densities,

� ~
i
i ~
i
i ��; k;!� � 	2Re

"X
l



l ~
i
i ��; k;!��
�d�

l ~
i
i

��; k;!�

#
:

(4)
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No such relation could be found for the nondiagonal parts,
which turn out to be complex functions.

These genuine dynamic functions contain singularities
not only at the critical dimension dc, but they also contain
poles at lower dimensions (e.g., d � 3) due to a shift of Tc
and the expansion of the correlation length �. These poles
are purely static and can be eliminated by resumming the
Tc shift and the correlation length. This procedure ex-
tends the method introduced by Schloms and Dohm for
static vertex functions [8] to dynamics and guarantees
regular expressions at d � 3 independent of the renorm-
alization method used.

The big advantage of using the above structure (2) and
the resummation is that the former huge amount of in-
tegral expressions, which has to be calculated, is reduced
to a minimal number. This makes it possible to calculate
even models which have been considered as too extensive
in past years (such as model F0 for 3He-4He mixtures) in
two loop order. Even in these most complex models, only
eight independent integrals remain for an explicit calcu-
lation after the rearrangement.

The different dynamic functions in (2) have a specific
dependence on the set of couplings leading to obvious
simplifications for models without the static couplings f�g
and/or dynamic couplings fgg,


	 ~		 � 1�
A�u;�� �
X
i

�iW
i
	 ~		

�u; f�g; fgg;�; f�g�;

(5)



i ~

j � �ij � �iW
i ~

j�u; f�g; fgg;�; f�g�; (6)

��d�
	 ~		

� �ka �
X
i

giGi	 ~		
�u; f�g; fgg;�; f�g�; (7)

��d�

i ~

j

� �ijk2 � giGi
i ~

j�u; f�g; fgg;�; f�g� (8)

(we suppressed the dependence on �, k, and ! of all these
functions), where a � 2 for a conserved and a � 0 for a
nonconserved order parameter. The term 
A�u;�� always
appears in (3). Its singular contribution depends on the
conservation property of the order parameter, which is
nonconserved for model A and conserved for model B (no
new dynamic singularities). Note that all the relations
mentioned thus far are valid in the unrenormalized per-
turbation theory.

All of our following calculations are performed within
the field theoretical formulation of renormalization group
theory [15]. The calculated dynamic functions 
 and ��d�

contain now singularities at dc (dc � 4 apart from model
J, where dc � 6) which will be absorbed into dynamic Z
factors and which determine the dynamic exponents.
For a conserved order parameter, only ��d� contain poles
which need an independent dynamic renormalization.
This is also true for all secondary densities because
they are in any case conserved quantities. For a
125301-2
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nonconserved order parameter both functions need dy-
namic Z factors.

We now present the two loop result for the & functions
in model F0 (all parameters are renormalized ones, see
[6]).

&� �
X
j

F 2
j 	

2

3

X
j

uF jaj 	
1

2

X
j;m

F jFmbjm

�
u2

9

�
L0 � x1L1 	

1

2

�
; (9)

&(j � �2
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F2
j

2w0
j

�
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1

2
Re�Q


�
; (10)

where we have introduced the complex coupling F j �
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Cj 	 iEj which is composed from couplings appearing in
models C and E defined by

Cj �

���������������
wj

1� wj

s
�j; Ej �

Fj������������������������
wj�1� wj�

q : (11)

In (8) and (9), we have defined the complex time scale
ratios wj � �=(j � w0

j � iw
00
j between the order parame-

ter and the secondary density Onsager coefficients (j and
the mode couplings Fj � gj=(j quite analogous to model
F in pure 4He [5]. The sum is running over the number of
all secondary densities. The quantities aj and bjk in (7)
are defined as

aj � Cj�1	 x1L1� � iEjx	x1L1 	F jL0; (12)

� �

bjm �CjCm�1	 2x1L1� � �CjiEm � CmiEj��1� x	x1L1� � EjEm �x� � v� x2��x

2
� � 2v2�
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	 2F jFmL0 	
F jFm
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ml
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2
j l
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jm � �1� wj 	 wm��1� wj � wm�l

�s�
jm
; (13)
FIG. 1. Temperature dependence [t � �T 	 Tc�=Tc] of the
thermal conductivity ,, the thermal diffusion ratio kT , and
the mass diffusionD in the mixture for different concentrations
(solid curves theory, experimental data from [17,18] molar
concentration as indicated in the figure). From a fit of the first
two coefficients, the third is predicted.
where we have introduced the ratio v � �=��. Further,
the following definitions have been used: x
 � 1
 v,
x1 � 2� v, and

L0 � 2 ln
2

1� v	1 ; L1 � ln
�1� v	1�2

1� 2v	1 ; (14)

l�a�jm � ln
1� wj
1�

wj
wm

; l�s�jm � ln
�1� wj��1� wm�

1� wj � wm
: (15)

The function Q introduced in (8) is given by

Q �
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with the quantities Wl � wl � w�
l � wlw

�
l and Ll �

ln�1�W	1
l �.

Setting the static couplings �i equal to zero, one re-
covers model E0 [7]. More important is the reduction to
model F, which is found by just skipping the indices and
the sums. In order to obtain model C, one sets equal to
zero in model F the mode coupling F and the imaginary
part w00. Regarding model F, the corrections we found
with respect to Ref. [5] concern terms, which go to zero at
the fixed point; thus, our results agree with model E [16].

In comparing our results with measurements of the
hydrodynamic transport coefficients—thermal conduc-
tivity, thermal diffusion ratio, and mass diffusion—we
proceed along the lines of Ref. [6]. The transport coef-
ficients are determined by k2 terms of ��d�


i ~

j
��; k;! � 0�

as functions of the static and dynamic parameters �i, u,
Fi, and wi.
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FIG. 2. Fit (full curve) of the amplitude R( at SVP of the
thermal conductivity in the range 10	3 to 10	5 to the data of
[19] and above 10	3 to the data of [20]. Dashed curve from [5].
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They also have been calculated in two loop order
making use of the results for the integrals already found
in model F [5]. The modification of the expressions for
the transport coefficients by the two loop terms has al-
ready been indicated by a function P [6] and turn out to be
numerically small contributions. The temperature de-
pendence of the dynamical parameters is known from
flow equations determined by the & functions, Eqs. (7)
and (8). Taking all these results into account, we fit the
temperature dependence of two transport coefficients
(thermal conductivity and thermal diffusion ratio) with
the background values of the dynamic couplings and time
ratios as adjustable parameters and predict the third one
(mass diffusion) (see Fig. 1). There is (i) an improvement
in the quality of the fit, (ii) some improvement in the
prediction of the mass diffusion, but an obvious discrep-
ancy remains, and (iii) the background values for the
imaginary parts of the time ratios change to more reliable
values.

We also have compared with the thermal conductivity
(T�t� at saturated-vapor-pressure conditions (SVP) in
pure 4He, respective with the effective amplitude R( �

(T=
�������������������
�g20kBCP

q
(see Fig. 2), with CP the temperature

dependent specific heat, g0 the unrenormalized mode
coupling and kB the Boltzmann constant. The background
parameter for the renormalized imaginary part of the
time ratio w found from a fit with the correct flow equa-
tions is now of the expected size w00 � 0:3 instead of
w00

Dohm � 0:8. In Ref. [21], the unrenormalized value was
shown to be approximately w00

0 � 0:21.
The next step concerning the suprafluid transition in

the mixture would be (i) to improve the accuracy of
125301-4
various static and dynamic quantities entering the com-
parison with theory, and (ii) a comparison with sound
velocity and sound absorption measurements both for
pure 4He and for the mixtures. For all other models,
two loop calculations of dynamic amplitude ratios come
now within the realm of possibility.
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