
VOLUME 89, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 16 SEPTEMBER 2002
Dynamical Overstability of Radiative Blast Waves: The Atomic Physics of Shock Stability
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Atomic-physics calculations of radiative cooling are used to develop criteria for the overstability of
radiating shocks. Our calculations explain the measurement of shock overstability by Grun et al. [Phys.
Rev. Lett. 66, 2738 (1991)] and explain why the overstability was not observed in other experiments.
The methodology described here can be especially useful in astrophysical situations where the relevant
properties leading to an overstability can be measured spectroscopically, but the effective adiabatic
index is harder to determine.
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nitrogen and xenon gas and showed that shocks in the large errors, since the ground configurations of Xe and Ar
Shocks play a crucial role in the death and the rebirth
of stars. At the end point of stellar evolution, a supernova
explosion launches a blast wave out into the surround-
ing medium with a velocity in the range 10 000–
20 000 km s�1. After about 10 000 yr the blast wave slows
to speeds of order 200 km s�1 and becomes ‘‘radiative’’;
i.e., radiative energy losses from a ‘‘cooling zone’’
some distance behind the shock front become an impor-
tant consideration in the overall shock dynamics.
Radiative shocks are subject to a number of interesting
hydrodynamic instabilities and oscillations. A velocity
dependent cooling instability may develop as the shock
slows [1–4]. This causes large amplitude fluctuations in
the shock velocity and in the distance between the shock
front and the radiative cooling zone. When the shock
slows sufficiently that the cooling instability dies away,
and the distance between the shock front and the cooling
zone is much smaller, it can become subject to a new
instability, an oscillatory rippling of its front that grows
as a power of time [5–9]. The ripples grow because the
thermal pressure of the shocked gas, which is perpen-
dicular to the local shock front, is not necessarily parallel
to the ram pressure of the upstream plasma, which is
directed along the shock velocity vector. In shocks with
sufficiently high compression this imbalance of pressures
induces oscillatory movement of material within the
shock shell. Parts of the shell that contain less mass
slow down more than the parts of the shell that contain
more mass and a growing oscillation ensues. In its non-
linear phase [9] knots or clumps of material may form
with sizes similar to the shocked shell thickness. It is
possible that local nonuniformities in interstellar gas
caused by the aforementioned instabilities provide the
initial conditions for gravitational collapse and the sub-
sequent birth of new stars.

The existence of growing ripples in radiative shock
fronts was demonstrated in a laboratory experiment by
Grun et al. [10]. These authors produced blast waves in
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more radiative xenon gas rippled with a power-law growth
rate close to theoretical predictions, whereas shocks in
nitrogen remained stable. More recently other research-
ers, working in a somewhat different parameter space,
attempted to produce the rippling overstability but were
unable to do so [11].

In this Letter we perform detailed calculations of the
radiative cooling of a shock front in nitrogen and xenon
plasma from which we derive the effective adiabatic
index �eff and using [8] infer the growth rate of the
overstability, with the aim of understanding just how
radiative a radiative shock needs to be to be overstable.
We find that in practice in the laboratory examples we
consider, the shocked plasma must cool significantly
during the shock transition, which is a distance of order
the ion mean free path [12,13]. We compare our results to
experiments [10,11] and show why Grun et al. [10] were
able to observe the overstability and why Edwards et al.
[11] could not. Since determining �eff from cooling cal-
culations is dependent on quantities such as element
abundances, densities, temperatures, and shock velocities
that can be measured spectroscopically, the formalism we
present can be helpful in astrophysical situations where
the effective adiabatic index is otherwise much harder to
determine.

Our method for computing the radiative cooling fol-
lows that in [14]. The Coulomb logarithm is set to its
appropriate value, and three body recombination is in-
cluded, as is appropriate for high density plasma. For
N, we use collisional ionization and radiative and dielec-
tronic recombination rates from [15]. Ionization
cross sections for Xe2�–6� and Xe8� can be found in
[16–20], from which rates were calculated and fitted to
a Lotz formula. Rates for Xe, Xe�, and Xe7� were esti-
mated by interpolation and extrapolation. We are unaware
of recombination rates for these Xe ions, so for radiative
and dielectronic recombination we substituted the corre-
sponding rates for Ar from [15]. This should not lead to
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FIG. 1. The spatial evolution of the electron and Xe ion
temperatures behind the shock front at 120 ns after laser pulse.
Distance is measured from the shock onset. The width of the
shock is 7:85e-3 cm, indicated by the vertical dotted line.

FIG. 2. The spatial evolution of the Xe ionization balance at
120 ns after the laser pulse.
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are 5s25p6 and 3s23p6, respectively, and in most of the
blast waves we model, Xe does not ionize into the 4d10

subshell. In any case three body recombination is usually
dominant. Radiative cooling rates for N II and N III are
calculated from collisional data given in [21,22] and
radiative data from [23–25] and the Opacity Project.
Cooling rates for more highly charged ions of N and for
the Xe ions were computed using the HULLAC suite of
codes [26,27]. All cooling rates were tabulated at a nomi-
nal electron density of ne � 1017 cm�3 and fitted to for-
mulas of the form �1� a�ne=1017 � 1���1, where a is a
constant for each ion to model the density dependence.We
neglect the small temperature dependence of a. The rates
for N and Xe at ne � 1017 cm�3 were similar to those
tabulated in [28] for N (interpolated from those for C and
O) and for Ar. The cooling rate for Xe X, the most highly
charged Xe ion in our model is the same as Ar X in [28]
multiplied by a factor of 10, obtained by comparison with
results in [29].

Another modification made to [14] is the use of a more
realistic density profile for the expanding laser target,
though this makes little difference to the blast wave
evolution in the Sedov-Taylor phase. With the appropriate
ambient gas density and a nominal ablated target kinetic
energy of 100 or 200 J for N or Xe, respectively (coming
from the energy of the laser pulse [10]), we calculate the
blast wave velocity and radius as a function of time after
the laser pulse. At each time we compute a steady state
radiative shock structure, demanding that the photoioniz-
ing radiation produced by the shocked gas must produce a
self-consistent preshock ionization state. Photoionization
rates are taken from [30], with those for Ar substituting
for Xe. For neutral Xe at least, the photoionization cross
section is very similar to that for neutral Ar [31]. We
assumed the radiative cooling in neutral N or Xe was
ineffective due to opacity, and the temperature of the
preshock gas (the shock precursor) is calculated by bal-
ancing the heating by photoionization with radiative
cooling. At these temperatures, molecular N2 should be
completely dissociated.

We model the shock interior by setting electron and ion
temperatures equal to the values given by the jump con-
ditions added to their preshock temperatures. We then
follow a Lagrangian plasma element through the shock
by integrating the simultaneous equations for the ioniza-
tion balance and electron and ion temperatures account-
ing for electron-ion collisional equilibration, radiation,
and ionization energy losses. After each time step we
modify particle temperatures and number densities ac-
cording to the effects of adiabatic expansion of the blast
wave, and radiative and ionization losses in an assumed
constant pressure environment. We proceed in this man-
ner for a time 400 ns following the laser pulse. Once the
Lagrangian element has moved a distance d, the shock
width, given by [12,13] d � h�4=3�2�=��� 1�vi�iii, we
evaluate � at each time step from the density enhance-
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ment of the plasma element relative to the preshock value.
In the expression for d, vi and �ii are the ion thermal
speed and self-collision time, respectively, and the angled
brackets h. . .i denote a time average through the shock
transition.

The evolution of the electron and ion temperatures with
distance behind the shock onset are plotted in Fig. 1 for
the Xe blast wave 120 ns after the laser pulse, and the
corresponding evolution of the ionization balance is given
in Fig. 2. We evaluate an average �eff for various times in
the evolution of the blast wave from the average density
enhancement in the accumulated shell of shocked gas
over the preshock density. These values are given in
Tables I for N and II for Xe. We also give at each time t
the shock velocity vs, radius R, the initial ionization state
and temperature T, and the Mach number M appropriate
to the precursor temperature T.

We evaluate the growth exponent real�s� and the value
of l � kR for each blast wave from Eqs. (19) in [8]. The
maximum real�s� and the l at which this occurs are given
in the penultimate two columns of Tables I and II. In this
calculation the shell thickness as a fraction of the blast
125002-2



TABLE I. Model parameters for N blast wave, 100 J laser pulse.

t vs R N N� N2� T M �eff real�smax� lmax �
(ns) (km s�1) (cm) (K)

40 87.5 0.68 0.109 0.845 0.046 32 200 15.6 1.045 �0:016 ! 0:32 82 ! 114 0.89
80 58.7 0.96 0.211 0.776 0.013 30100 10.8 1.20 �0:25 ! �0:065 0.49

120 44.1 1.16 0.377 0.621 0.002 28100 8.3 1.26 0.23
160 36.3 1.32 0.538 0.462 0.001 26 200 7.1 1.23 0.17
200 31.4 1.45 0.684 0.316 0.0 24 800 6.3 1.22 0.14
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wave radius is taken to be H=R � ��eff � 1�=��eff �
1�=3. The ranges of real�s� and l given in the tables
correspond to taking R / tm with m � 2=5 for adiabatic
Sedov-Taylor behavior or m � 2=7 for the strongly radi-
ating pressure driven snowplow case, which gives the
higher values of real�s� and l. This is expected to be the
case for the blast wave under consideration, although
the data of [10] appear to be slightly more consistent
with m � 2=5. However, if the energy radiated by the
shocked plasma is absorbed upstream and consequently
swept back up by the shock, Edwards et al. [11] speculate
that behavior closer to the Sedov-Taylor limit may be
observed even for strongly radiating shocks, and this limit
was assumed in the calculations of ionization balance and
radiative cooling. Examples of the stability calculations
are given in Fig. 3 for Xe at 60, 120, and 240 ns, which
follow the transition from strong overstability through to
stability for m � 2=7. We find generally that �eff must be
closer to 1 for overstability than in the original work [5].
This is because we calculate the Mach number independ-
ently of �eff whereas Vishniac [5] couples them to ensure
an isothermal shock, as in Eq. (22) of [8]. The final
column in Tables I and II gives the fraction of the kinetic
energy of the incident upstream plasma (in the shock rest
frame) that is radiated away during the shock transition,
�. This is estimated by identifying the � we calculate at
distance d behind the shock with the �1 parameter in
[32,33], and using their relation between � and �1.

From Tables I and II, our results are in qualitative
agreement with the observations in [10]. The N blast
TABLE II. Model parameters for

t vs R Xe Xe� Xe2� Xe3� Xe4�

(ns) (km s�1) (cm)

40 75.3 0.60 0.0 0.040 0.652 0.281 0.027
60 57.3 0.73 0.0 0.263 0.718 0.019 0.0
80 47.0 0.84 0.001 0.439 0.554 0.006 0.0
100 40.5 0.93 0.003 0.647 0.349 0.001 0.0
120 36.0 1.00 0.006 0.784 0.210 0.0 0.0
160 29.9 1.13 0.019 0.917 0.065 0.0 0.0
200 26.0 1.24 0.047 0.935 0.018 0.0 0.0
240 23.2 1.34 0.101 0.894 0.005 0.0 0.0
300 20.2 1.47 0.207 0.792 0.001 0.0 0.0
400 16.9 1.66 0.406 0.594 0.0 0.0 0.0
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wave is stable at all times (except at 40 ns, but here the
blast wave evolution is probably still dominated by the
exploding target), whereas the Xe blast wave shows over-
stability for times between 60 and 150–300 ns, depend-
ing on the value of m. The predicted stabilization for Xe at
150–300 ns is in good agreement with observations.
However, we still predict growth at lower s and higher l
than actually observed, though Grun et al. [10] caution
that their measurements of kR may not be identical to the
l in the theory. Additionally the theory treats only the
linear regime, while the measurements presumably in-
clude nonlinear effects.

The overstability is suppressed at early times because
insufficient time has elapsed to allow the shock heated Xe
plasma to cool significantly. Similar speed blast waves
launched by a more energetic laser pulse (and thus having
decelerated from a higher initial velocity with more time
available for cooling) would be overstable. At late times
the blast wave stabilizes simply because the radiative
power loss becomes insufficient at the lower shock speeds.
From Table II it appears that approximately 80%–90% of
the incident plasma kinetic energy must be radiated in the
shock transition before overstability occurs. It is also now
clear why overstabilities were not observed in [11].
Edwards et al. launched shocks in Xe gas at atmospheric
pressure with velocities initially 15 km s�1 slowing to
around 6 km s�1. The blast waves in [10] were initiated
at speeds of order 100 km s�1 in Xe gas at 5 torr pressure.
From Table II it is clear that at 5 torr pressure below a
minimum shock speed of around 25 km s�1 Xe will no
Xe blast wave, 200 J laser pulse.

T M �eff real�smax� lmax �
(K)

46 100 34.2 1.19 0.596
37 400 28.9 1.015 0:60 ! 0:86 257 ! 349 0.963
35 100 24.5 1.025 0:13 ! 0:45 152 ! 210 0.942
32 600 21.9 1.028 0:13 ! 0:45 135 ! 187 0.918
30 700 20.0 1.033 0:046 ! 0:38 114 ! 158 0.901
27 700 17.5 1.048 �0:17 ! 0:19 77 ! 108 0.876
25 100 16.0 1.057 �0:23 ! 0:13 64 ! 91 0.851
23100 14.9 1.075 �0:253 ! 0:021 <69 0.825
19 000 13.5 1.096 <� 0:044 0.775
19 000 12.0 1.13 <� 0:067 0.710
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FIG. 3. Plots of real�s� where the overstability grows as ts, for
Xe blast waves observed at 60, 120, and 240 ns after the laser
pulse. Curves are calculated from Eqs. (19) of Ref. [6], using
shock parameters given in Table II.
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longer be overstable. This minimum shock speed will
likely be higher for Xe shocks at atmospheric pressure,
since the higher density will reduce the radiative cooling
rate by electron collisional depopulation of excited levels.

We believe that we have captured the essential physics
of the radiative blast waves observed in [10]. The funda-
mental reason why the N blast waves are stable is not so
much that N is inherently less radiative than Xe at the
relevant temperatures, but that its radiation is more sup-
pressed in our cooling calculations by the electron density
than that for Xe. However, we do still expect that heavy
element plasmas, rather than the H-He dominated cosmic
composition, will be more susceptible to the overstability.
Thus a promising astrophysical environment in which to
look for such effects might be the heavy element rich
plasma in the ejecta of supernova remnants, for which the
reverse shock can be radiative in early phases [34].
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