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Universality of Small Scale Turbulence
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The proposed universality of small scale turbulence is investigated for a set of measurements in a
cryogenic free jet with a variation of the Reynolds number (Re) from 8500 to 106 (maxR� � 1200). The
traditional analysis of the statistics of velocity increments by means of structure functions or
probability density functions is replaced by a new method which is based on the theory of Markov
processes. It gives access to a more complete characterization by means of joint probabilities of finding
velocity increments at several scales. Based on this more comprehensive method, our results are very far
from a possible universal state, even for R� above 1000.
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show universal behavior, independent of the experimental
setup [7]. A different result, however, was found for the

data satisfy Eq. (2) if ri and differences of scales �r �
ri�1 	 ri are larger than an elementary step size lMar,
The complex behavior of turbulent fluid motion has
been the subject of numerous investigations over the past
60 years and still the problem is not solved [1]. Especially
the unexpected frequent occurrences of high values for
velocity fluctuations on small scales, known as small
scale intermittency, remain a challenging subject for
further investigations. The characterization of this re-
markable feature of turbulence has led to many fruitful
new concepts, which enabled us to get a deeper physical
understanding of many complex systems.

Based on the pioneering works [2– 4], turbulence is
usually assumed to be universal, i.e., for scales r within
the inertial range � � r � L, the statistics of the veloc-
ity field is independent of the large scale boundary con-
ditions, the mechanism of energy dissipation, and the
Reynolds number (Re). L denotes the integral length
and � the dissipation length. The assumed universality
has gained considerable importance for models and nu-
merical methods such as large eddy simulations; cf. [5].
Finding experimental evidence for the validity of the
assumed universality is therefore of utmost importance.

A central quantity to be investigated is the so-called
longitudinal velocity increment u�r�,

u�r� � e � �v�x� er; t� 	 v�x; t�
; (1)

where r is a certain length scale, v and e denote the
velocity and a unit vector with arbitrary direction, re-
spectively. Traditionally, the statistics of u�r� is charac-
terized by its moments Snu�r� � hun�r�i, the so-called
structure functions. Within the inertial range, proposed
self-similarity leads to Snu�r� / r�n . More pronounced
scaling behavior is found for the so-called extended
self-similarity method [6].

Experimental investigations carried out in several flow
configurations at a large variety of Re numbers yield
strong evidence that the scaling exponents �n, in fact,
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probability density functions (pdf) p�u; r�. Studies using
the theoretical framework of infinitely divisible multi-
plicative cascades show that the relevant parameters de-
scribing intermittency depend on the Re number [8].

From the point of view of statistics, a characterization
of the scale dependent disorder of turbulence by means
of structure functions or pdfs p�u; r� is incomplete.
Theoretical studies [9] point out that a complete statisti-
cal characterization of the turbulent cascade has to take
into account the joint statistical properties of several
increments on different length scales. An experimental
study concerned with the statistical properties of small
scale turbulence and its possible universalities therefore
requires an analyzing tool which is not based on any
assumption on the underlying physical process and which
is capable of describing the multiscale statistics of veloc-
ity increments. Such a tool is given by the mathematics of
Markov processes. This tool allows one to derive the
stochastic differential equations governing the evolution
of the velocity increment u in the scale parameter r from
experimental data [10,11].

In this Letter we present, first, our new method to
analyze experimental data, second, results for different
Re numbers, and third, experimental findings which ques-
tion the proposed universality.

The stochastic process governing the scale dependence
of the velocity increment is Markovian, if

p�u1; r1 j u2; r2; . . . ; uN; rN� � p�u1; r1 j u2; r2�; (2)

holds [12,13]. The conditional pdf p�u1; r1 j
u2; r2; . . . ; uN; rN� describes the probability for finding
the increment u1 on the smallest scale r1 provided that
the increments u2; . . . ; uN are given at the larger scales
r2; . . . ; rN . We use the conventions ri � ri�1 and ui �
u�ri�. In [11,14] it has been shown that experimental
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FIG. 1. Taylor-scale Reynolds number R� (for details on the
determination, see [11]) as a function of the nozzle-based
Reynolds number Re. Line: R� � 1:35
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comparable to the mean free path of molecules under-
going a Brownian motion.

As a consequence of (2), the joint pdf of N
increments on N different scales simplifies to
p�u1; r1; u2; r2; . . . ; uN; rN� � p�u1; r1 j
u2; r2� . . .p�uN	1; rN	1 j uN; rN�p�uN; rN�. This indicates
the importance of the Markov property: The entire in-
formation, i.e., any N-scale distribution of the velocity
increment, is encoded in the conditional pdf p�u; r j
u0; r0� (with r � r0).

For Markov processes the evolution of p�u; r j u0; r0� in
r is described by the Kramers–Moyal-expansion [12]. For
turbulent data it was verified [11] that this expansion can
be reduced to the Fokker-Planck equation:

	r
@
@r

p�u;r j u0;r0� � 	
@
@u

�D�1��u;r�p�u;r j u0;r0�


�
@

@u2
�D�2��u;r�p�u;r j u0;r0�
: (3)

It is easily seen that the single scale pdf p�u; r� obeys the
same equation. Furthermore, the coefficients D�1� and
D�2� (drift and diffusion coefficient, respectively) can be
extracted from experimental data in a parameter-free way
by their mathematical definition, see [12,13]:

D�k��u; r� � lim
�r!0

r
k!�r

M�k��u; r;�r�; (4)

M�k��u; r;�r� �
Z �1

	1
�~uu 	 u�kp�~uu; r	�r j u; r�d~uu: (5)

Next, we focus on the analysis of experimental data
measured in a cryogenic axisymmetric helium gas jet at
Re numbers ranging from 8500 to 757 000. Each data set
contains 1:6� 107 samples of the velocity measured in
the center of the jet in a vertical distance of 40D from the
nozzle using a self-made hotwire anemometer (D �
2 mm is the diameter of the nozzle). Taylor’s hypothesis
of frozen turbulence was used to convert time lags into
spatial displacements. Following the convention chosen
in [11], the velocity increments are given in units of �L ����
2

p
�, where � is the standard deviation of the velocity

fluctuations of the respective data set.
In order to check consistency of the data with com-

monly accepted features of fully developed turbulence,
we calculated the dependence of the Taylor-scale Re
number R� on the nozzle-based Re number. Figure 1
shows that R� scales like the square root of Re, in ac-
cordance with theoretical considerations and earlier ex-
perimental results; for further details, see [15].

The Markov condition (2) was checked using the
method proposed in Ref. [11]. For all the data sets, the
Markov property was found to be valid for scales ri and
differences of scales �r � ri�1 	 ri larger than the step
size lMar, which turned out to be about equal to the Taylor
microscale � (for all Re numbers).
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Having determined the Markov length lMar, the coef-
ficients D�1��u; r� and D�2��u; r� can be estimated from the
measured conditional moments M�1� and M�2� according
to Eq. (4). The extrapolation towards �r � 0 was per-
formed fitting linear functions to the measured M�k� in the
interval lMar � �r � 2lMar [16]. Figure 2 shows the re-
sulting D�1� and D�2� for the data set at R� � 1180. The
coefficients exhibit linear and quadratic dependencies on
the velocity increment, respectively:

D�1��u; r� � 	��r�u;

D�2��u; r� � ��r� 	 ��r�u� ��r�u2:
(6)

Equation (6) is found to describe the dependence of the
D�k� on u for all scales r as well as for all Reynolds
numbers investigated. By fitting the coefficients D�k� ac-
cording to (6), it is thus possible to determine the scale
dependence of the coefficients �, �, �, and �.

For � and �, we obtain (see the inset of Fig. 3):

��r� � �0
r
�
; ��r� � �0

r
�
: (7)

The slopes �0 and �0 strongly depend on the Re number
(see Fig. 3) and can be approximated by:

�0 � 2:8Re	3=8; �0 � 0:68Re	3=8: (8)

For ��r� of D�1� (see Fig. 4), a universal function of r=� is
found which is well described by

��r� �
2

3
� c

����
r
�

r
; (9)

where c � 0:20� 0:01.
These results allow for a statement on the limiting case

of infinite Reynolds numbers, Re ! 1. According to
Eq. (8), the coefficients � and � tend to zero [18]. ��r�
does not depend on Re. Thus drift and diffusion coeffi-
cients take the following simple form for Re ! 1:
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FIG. 3. Coefficients �0 (circles) and �0 (squares) defined in
Eqs. (6) and (7) as functions of the Reynolds number Re; lines
represent power laws in Re with a scaling exponent of 	3=8.
The inset displays ��r� as a function of the length scale r for
R� � 1180. The best fit to the data point give exponents of
	0:36� 0:05.
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FIG. 2. Coefficients D�1��u; r� (a) and D�2��u; r� (b) as func-
tions of the velocity increment u at r � 3� (circles), r � L=2
(squares), and r � L (triangles). The dotted curves correspond
to linear (a) and polynomial (b) (degree two) fits to the
measured data.
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D�1�
1 �u; r� � 	��r�u; D�2�

1 �u; r� � �1�r�u2: (10)

Based on this limiting result, we discuss implications
for the structure functions Snu�r�. This should quantify the
importance of the coefficients � and � and, thus, give
evidence how far away our measured data are from a
universal state, which should show scaling behavior.
After the multiplication of the corresponding Fokker-
Planck equation (3) for p�u; r� with un from left and
successively integrating with respect to u, the equation

r @
@r S

n
u�r�

nSnu�r�
� ��r� 	 �n	 1��1�r� (11)

is obtained.
According to Kolmogorov’s four-fifth law (cf. [1]), the

third order structure function, S3u�r�, is proportional to r.
Thus, for n � 3, the left side of Eq. (11) is equal to 1=3
and �1�r� is given by:
124502-3
�1�r� �
��r�
2

	
1

6
: (12)

For increasing Re, the experimental results for ��r� in
fact show a tendency towards the limiting value �1 (see
Fig. 4), but it is also clearly observed that the convergence
is slow and that even the highest accessible Re numbers
are still far from this limiting case. This is in accordance
with recent theoretical findings [19].

To summarize, the framework of Markov processes can
successfully be applied to characterize the stochastic
behavior of turbulence with increasing Re number.
Moreover, this description is complete in the sense
that the entire information about any N-scale pdf
p�u1; r1; u2; r2; . . . ; uN; rN�, is encoded in the two coeffi-
cients D�1��u; r� and D�2��u; r�. We find rather simple de-
pendencies on their arguments u, r, and the Re number.

The Re dependence of the coefficients, especially of
D�2�, yields strong experimental evidence for a significant
change of the stochastic process as the Re number in-
creases. This finding clearly contradicts the concept of a
universal turbulent cascade and might also be of impor-
tance in large eddy simulations where the influence of the
subgrid stress on the large scale dynamics of a turbulent
flow is modeled under the assumption of universality.

It is easily verified that, according to Eq. (11), the
increase of ��r� with Re excludes the simple scaling
laws proposed by Kolmogorov in 1941 [3]. The universal
functional dependence of ��r� on r [Eq. (9)] does not
support the value of � � 1=3 [10,20]. The obvious de-
pendence of the coefficients � and � on r also contradicts
that structure functions exhibit proper scaling behavior
for all orders n, as can be derived from Eq. (11). This does
not say that tendencies to commonly known scaling
behavior are present.
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FIG. 4. The slope ��r� of D�1� (a) and the quadratic coefficient
��r� of D�2� (b) as functions of the scale r for several Reynolds
numbers (given by R�; see legend). � is close to a universal
function of the scale � � r=� [the dotted line is a fit according
to Eq. (9)], the coefficient � exhibits a strong dependence on
the Reynolds number [17] with a clear tendency towards the
limiting value �1�r� given by Eq. (12) (full line).
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With the limiting values for the coefficients D�k� as
given by Eq. (10), the stochastic process for infinite
Reynolds numbers corresponds to an infinitely divisible
multiplicative cascade [21] as proposed in Ref. [22]. From
the slow convergence of the measured coefficient ��r�
towards its limiting value �1�r�, it is obvious that turbu-
lent data measured in typical laboratory experiments are
still far from that special case. It is therefore important to
develop a better understanding of the limiting case Re !
1 as indicated, for example, in [23]. It seems question-
able whether models on turbulence established under the
assumption of infinite Reynolds numbers can be tested in
real-life experimental situations at all.
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