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Universal Spectrum of Two-Dimensional Turbulence on a Rotating Sphere
and Some Basic Features of Atmospheric Circulation on Giant Planets
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The Kolmogorov-Batchelor-Kraichnan (KBK) theory of two-dimensional turbulence is generalized
for turbulence on the surface of a rotating sphere. The energy spectrum develops considerable
anisotropy; a steep �5 slope emerges in the zonal direction, while in all others the classical KBK
scaling prevails. This flow regime in robust steady state is reproduced in simulations with linear drag.
The conditions favorable for this regime may be common for giant planets’ atmospheric circulations;
the same steep spectra are found in their observed zonal velocity profiles and utilized to explain their
basic characteristics.
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[1] geometries. The inverse cascade and ensuing large- flows is questionable.
Two-dimensional rotating turbulent flows with non-
zero gradient of ambient vorticity, such as flows on
the surface of a rotating sphere, are important for un-
derstanding large-scale terrestrial and planetary circula-
tions. Such flows exhibit anisotropic behavior highlighted
by energetic alternating zonal jets. This behavior is a
manifestation of a hydrodynamic regime with a highly
anisotropic spectrum. In this Letter, we generalize the
Kolmogorov-Batchelor-Kraichnan (KBK) theory to in-
clude the new regime and demonstrate its realizability in
steady state. Some of the problematics of that regime are
similar to those of forced nonrotating 2D turbulence, and
we start with a brief survey of the latter case. Forced,
isotropic 2D turbulence is described by the KBK theory
that is based upon two invariants, � and �, the rates of
spectral transfers of energy and enstrophy. Simultaneous
energy and enstrophy cascades cannot coexist in the same
spectral range giving rise to the downscale (direct) ens-
trophy and upscale (inverse) energy cascades. The inverse
cascade renders 2D turbulence nondissipative and un-
steady. In an unbounded domain, one can define a quasis-
teady state in which the modes swept by the inverse
cascade remain in steady state and comprise the energy
range. In that range, the one-dimensional spectral energy
density E (energy per mode n; n being the total wave
number in the spherical harmonics expansion) depends
on � and n only, leading to celebrated KBK spectrum

E�n� � CK�
2=3n�5=3; (1)

CK being the Kolmogorov-Kraichnan constant whose
accepted value is CK ’ 6 in both planar and spherical
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scale energy condensation [2] render steady-state simu-
lations in a bounded domain unfeasible without some
kind of a large-scale energy withdrawal mechanism.
If such a mechanism (drag) is introduced, its effect
is assumed to be confined to the range n < nfr, nfr being
the frictional wave number. The modes n > nfr comprise
the inertial range with the energy spectrum (1). Flows of
this kind were indeed produced both experimentally [3,4]
and computationally [5,6]. The existence of KBK inertial
range critically depends on drag’s representation. Various
high-power inverse Laplacian (hypofriction) formula-
tions have been employed to ensure sharp energy cutoff
for n < nfr and enlarge the inertial range. However, in
long integrations, even if initial spectrum adheres to (1),
energy tends to accumulate in the lowest modes leading to
spectral steepening and eventual disappearance of the
KBK scaling [7,8]. Such behavior can be traced to the
distortion of the inverse cascade due to abrupt falloff of
the spectrum at n < nfr. Triad interactions that include
quashed modes become inactive and facilitate energy
accumulation in unquashed modes. This problem can be
alleviated with the use of a two-parametric large-scale
drag representation designed to emulate undistorted en-
ergy transfer by triad interactions [6]. This representation
is close to the linear drag. Most experimental and nu-
merical investigations in which the robust steady-state
KBK regime was obtained employed linear drag.
Mimicking soft damping processes such as friction in
Ekman boundary layers [9], linear drag is quite common
in nature. The high-power hypofriction parametrizations,
on the other hand, do not represent any known physical
processes, and their utility for simulation of realistic
2002 The American Physical Society 124501-1



TABLE I. Parameters of simulations on rotating sphere.

Simulation � � nfr n� ni nz

S1 �0 �0 7.7 38.3 18.2 84.8
S2 �0 0:5�0 5.5 25.2 12 46.6
S3 5�0 �0 7.7 27.7 13.1 53.4
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When rotation is present, 2D turbulence preserves two
invariants and inverse cascade that hampers attaining the
steady state. The analysis of quasisteady state should now
include two new parameters, �=R and m, � and R being
the angular velocity and the radius of the sphere, respec-
tively, and m being the zonal wave number. These pa-
rameters appear in Navier-Stokes and vorticity equations
and form two additional independent dimensionless
groups. The generalized nondimensional expression for
E becomes anisotropic,

�1 � f��2;�3�; (2)

where �1 � E=���=R�2n�5�, �2 � n=n�, �3 � m=n,
and n� � ���=R�3=��1=5. The analytical representation
of the function f can be determined from quasisteady
state simulations [1,10,11]. For �2 < 1 and �3 ! 0, f
approaches a constant value ofCZ � O�1�. In the opposite
limit �2 ! 1, the flow becomes isotropic and f is in-
dependent of �3 and �=R; then, the dependence f /
�n=n��10=3 recovers the KBK scaling. The same scaling
extends for �2 < 1 and �3 � 0. Synthesizing all infor-
mation, obtain the anisotropic spectral scaling of 2D
turbulence on rotating sphere in quasisteady state,

E�n;m=n� � CK�2=3n�5=3; m=n � 0; (3)

E�n;m=n� � CZ��=R�2n�5; m=n! 0;

n=n� < 1:
(4)

Numerical simulations on both the �-plane [10] and ro-
tating sphere [1] give CZ ’ 0:5.

The k�5 spectrum on the �-plane was discussed by
Rhines [12] based upon dimensional considerations.
Rhines noted that such a steep spectrum must be nonlocal
and depend on low modes, thus negating the initial scal-
ing; spectral anisotropy was excluded in this analysis. For
some time, this controversy has hampered further explo-
ration of the spectrum. The present results demonstrate
that this steep spectrum is a component of the anisotropic
spectrum (3) and (4). The impact of the ambient vorticity
gradient on 2D turbulence is threefold: the energy flux
becomes reorientated into zonal flow [10]; the stability of
the zonal flow is enhanced, via Rayleigh-Kuo criterion
[10]; the spectrum (4) imposes an upper limit on the
energetic capacity of zonal modes and thus represents a
saturation spectrum [1].

A fundamental question is the reproducibility of the
new regime in robust steady state, i.e., in flows with
small-scale forcing and large-scale drag.

To address this issue, a series of long-term simulations
with a linear drag were performed using a barotropic 2D
vorticity equation on the surface of a rotating sphere with
the radius R � 1. A Gaussian grid was employed with
400� 200 resolution (400 nodes in longitude, 200 nodes
in latitude) and 2=3 dealiasing rule (R133 rhomboidal
truncation). Simulations differed in both � and �. The
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Gaussian random forcing was distributed among all
modes n � 83; 84; 85 with constant variance; it was un-
correlated in time and between the modes.

The energy spectra in spherical geometry were calcu-
lated as E�n� � n�n�1�

4R2

P
n
m��nhj 

m
n j

2i, where  mn is the
coefficient with the spherical harmonic Ymn in stream
function decomposition, and the brackets indicate an
ensemble or time average [13,14]. Introduce zonal and
residual spectra according to E�n� � EZ�n� � ER�n�,
where the former corresponds to the addend with
m � 0; EZ and ER intersect at ni � �CZ=CK�3=10n�.
Introduce also a zonal spectrum per mode m and n,
E0
Z�n� � EZ�n�=�m, where �m � 1. Numerically, this

spectrum is congruent to (4). For large n, when the
spectrum is nearly isotropic, E0

Z�n� � CK�
2=3n�5=3=

�2n� 1� ’ �1=2�CK�
2=3n�8=3. For that spectrum, the

transition between �5 and �8=3 scaling exponents takes
place at nz � �2CZ=CK�

3=7�n�=�m�
3=7n�.

We report results of three simulations; their respective
parameters are summarized in Table I. The natural time
scale was � � ��1. In all simulations, executed for the
total time in excess of 100 000 days, a robust steady state
had been attained after about 10 000 days. The flow field
exhibited slow variability such that proper spectral esti-
mates required long and tedious averaging. Figure 1(a)
shows a typical sample of the instantaneous zonal spec-
trum. Although it appears to follow the scaling (4) in
general, it exhibits large fluctuations exceeding at times
2 orders of magnitude. The corresponding average spectra
were calculated using about 2000 samples separated by
time intervals of 40 days; they are shown in Figs. 1(b)–
1(d). In all three simulations, the averaged spectra appear
smooth; the zonal spectra are in good agreement with
Eq. (4), and the residual spectra agree well with the
Kolmogorov spectrum (3). The transition from the
�8=3 to �5 slope takes place around nz which is apparent
in Figs. 1(c) and 1(d). At n < ni, a single zonal mode holds
more energy than all the nonzonal modes together. At
about nfr, the spectra appear to start leveling off. The
zonal energy ‘‘spills’’ into adjacent modes at low n.
Finally, it is emphasized that the zonal spectra in steady
state are independent of �. In summary, these simulations
confirm the existence of the new flow regime in steady
state and demonstrate its peculiar connection with the
isotropic KBK scaling in the spectral region where flow is
strongly anisotropic and dominated by Rossby waves.

The new flow regime has not yet been produced ex-
perimentally. However, the upper atmospheres of four
124501-2
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FIG. 1. Instantaneous zonal spectrum (a) and averaged zonal
(thick lines) and residual (thin lines) spectra in simulations S1–
S3 [(b)–(d), respectively] of 2D turbulence on rotating sphere.
Dashed, dotted, and dash-dotted lines represent 0:5��=R�2n�5,
6�2=3n�5=3, and 3�2=3n�8=3 spectra, respectively.
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giant planets of our solar system, gas giants Jupiter and
Saturn and ice giants Uranus and Neptune, present gi-
gantic natural laboratories where this regime can materi-
alize. Because of the absence of solid surfaces and
adjacent boundary layers, the giant planets’ atmospheres
are characterized by relatively weak friction (low nfr).
Fast rotation and relatively weak forcing, particularly on
the ice giants, result in large n�. The effect of the vertical
density stratification is important on scales smaller than
the Rossby deformation radius [9]. On the giant planets,
these scales are smaller than n�1

� . Scales beyond the
Rossby radius are characterized by barotropic dynamics
[15,16]. There are indications that 3D barotropic flows
with strong rotation and small aspect ratio undergo ‘‘two-
dimensionalization’’ and develop flow regime with the
�5=3 spectrum in the horizontal [11]. Such flows may
undergo further ‘‘one-dimensionalization’’ in the spectral
range n 2 �nfr; n��, giving rise to a regime with the zonal
spectrum (4). Indeed, the spectra of the large-scale zonal
circulations on the gas giants agree with (4) both in the
slope and in the magnitude [17]. Here the analysis is
extended to incorporate new data for Jupiter and to in-
clude the ice giants whose characteristics are significantly
different from those of the gas giants. The results are
shown in Fig. 2. The observed profiles of the large-scale
atmospheric circulations are, in fact, single realizations
of turbulent flow fields; large fluctuations, at times ex-
ceeding 2 orders of magnitude, resemble those detected
in simulations, Fig. 1(a). In the range n < nfr, the spectra
tend to level off, consistently with the action of some kind
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of a large-scale drag. The rapid drops in the spectra in the
vicinity of nfr are similar to that in simulated instanta-
neous spectrum, Fig. 1(a). For the ice giants, the data are
scarce and insufficient for meaningful spectral analysis;
instead, we have used analytical expressions interpolating
the data [20,21]. In the inertial range n > nfr, the spectra
on Jupiter, Saturn, and Neptune are in good agreement
with the theoretical spectrum (4) with regard to both
the slope and the magnitude. For Uranus, the data are
extremely scarce, but even in this case, the mode n � 3
appears to belong on the theoretical line. Observe that the
agreement of the zonal spectra with (4) on all four planets
confirms its independence of �; the total kinetic energy is
determined by �, R, and nfr only. Using a simple con-
ceptual model that assumes a constant spectrum for
n < nfr and (4) for n > nfr, and integrating from 0 to
1, an equation for the total kinetic energy of atmospheric
circulation on giant planets can be derived,

Etot �
5
4CZ��=R�

2n�4
fr : (5)

Defining an averaged velocity as U � �2Etot�
1=2, find

nfr � nR, where nR � ���=R�=U�1=2 is the Rhines’s
wave number. Note that the modes around nR contain
most of the energy and their signature dominates the
zonal velocity profile. Thus, RnR is roughly equal to the
number of zonal jets. A scale equivalent to n�1

R was
introduced by Hide [22] to characterize the widths of
the equatorial flows on Jupiter and Saturn. Although the
precise physics of the large-scale friction on giant planets
is still unknown, it is reasonable to assume that the
friction is ultimately related to 3D turbulence and that
higher values of forcing � would be accompanied by
higher turbulence intensity and a higher rate of dissipa-
tion or, equivalently, higher values of nfr. Assume that �
is some fraction of the energy obtained from the solar
heating (internal energy sources may roughly double its
value [23]) and is thus decreasing with increasing dis-
tance away from the Sun such that nfr also decreases
in the order from Jupiter to Neptune. Indeed, using the
observed values of Etot, find nR ’ nfr ’ 13, 6.9, 3.9, and
2.6 for Jupiter, Saturn, Uranus, and Neptune, respectively.
This observation, combined with the dependence of Etot

on �, R, and nfr and independence of � is critical for
understanding the energetics of atmospheric circulations
on giant planets. It also resolves the mystery of circulation
on Saturn being stronger than that on Jupiter and circu-
lation on Neptune being stronger than that on Uranus,
although the former planets are farther away from the
Sun and are expected to have weaker forcing. Applied to
the ice giants, same ideas suggest that even though the
forcing there is minuscule, acting over a very long time,
it is nevertheless sufficient to spin up circulations with
considerable kinetic energies; in fact, Neptune, that is,
the giant planet farthest away from the Sun, has the
most energetic circulation in the solar system. These
124501-3
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FIG. 2. Top row: observed zonal profiles deduced from the motion of the cloud layers [18–21]; bottom row: observed zonal spectra
(solid lines and asterisks) and theoretical zonal spectra Eq. (4) (dashed lines) on the giant planets [all spectra are normalized with
their respective values of ��=R�2].

VOLUME 89, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 16 SEPTEMBER 2002
results may also be instrumental for quantifying basic
parameters of circulation on extrasolar giant planets when
proper data become available.

In summary, rotating 2D flows with nonzero gradient
of ambient vorticity, under some circumstances, develop a
fundamentally new, anisotropic flow regime where most
of the energy resides in zonal jets, while its level is
independent of forcing. Spectra of these flows, given by
Eqs. (3) and (4) with universal constant CZ ’ 0:5, can be
derived by combining computer simulations and extended
KBK-type dimensional analysis. Systems favoring this
regime are characterized by low friction and fast rotation;
among naturally occurring environments that can harbor
this regime are the atmospheres of giant planets.
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