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Quantum Theory of Spontaneous Emission by Real Moving Atoms
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We outline the solution of a fundamental problem in quantum theory which has hitherto lacked a
proper solution, namely, finding the requisite quantum theoretical framework guaranteeing that the
calculated inverse spontaneous emission rate of a moving atom, as a composite system of charged
particles interacting with the Maxwell field, is slowed down exactly as in time dilation.
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rate based on his approach would be consistent with the
requirements of special relativity. As we show here, the

frame, or rest frame, we must have RR � 0, by definition.
This allows us to carry out a Power-Zienau-Woolley
It has recently been shown that a neutral atom bearing
an electric dipole moment moving in an external mag-
netic field can accumulate a quantum phase [1–5].
A moving dipole may, under suitable conditions, exhibit
a detectable Aharonov-Bohm phase shift [6] and the
rotational motion of a Bose-Einstein condensate in a
vortex state can induce a magnetic monopole [7,8] dis-
tribution or an electric charge distribution [8]. These and
other effects associated with atomic motion continue to
receive considerable attention and especially so with the
advent of atom optics [9,10] and laser cooling and trap-
ping [11]. At first sight, it would appear that the requisite
theory for the description of phenomena involving mov-
ing atoms could be constructed as a straightforward
extension of nonrelativistic quantum optics by incorpo-
rating the translational motion of the atomic center
of mass.

In fact, the need to incorporate the center of mass
motion in quantum optics theory had necessitated a re-
appraisal of the corresponding nonrelativistic quantum
electrodynamical theory where investigations sought to
elucidate how the division of the motion into center of
mass and internal motions is affected by the presence of
the interaction with electromagnetic fields [12–15]. One
of the main outcomes of these investigations was the
emphasis on the role of the Röntgen interaction [16]
energy term which couples the electric dipole moment
to an effective electric field involving the center of mass
velocity and the magnetic field of the light.

Wilkens [17] was the first to question the role of the
center of mass motion in the process of spontaneous
emission. In particular, he pointed out that a theory which
excludes the Röntgen interaction would lead to spurious
velocity-dependent effects when evaluating the sponta-
neous decay rate of an excited electric dipole moving
freely in electromagnetic vacuum. Wilkens extended his
work to include the Röntgen interaction and evaluated the
scattering rate into a given solid angle in a given direc-
tion, deducing that this was free of any spurious velocity
dependences [18]. He did not, however, proceed to ascer-
tain whether the calculated total spontaneous emission
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incorporation of the Röntgen interaction in the theory,
albeit important, is not sufficient on its own to guarantee
the emergence of a total spontaneous emission rate which
conforms with relativity.

More recently, Barton and Calogeracos [19] high-
lighted the absence in the literature of a proper treatment
of the quantum theory of spontaneous emission of atoms
moving in a classically assigned trajectory. This is so even
for the simplest case of a uniformly moving atom. As far
as the authors are aware, a workable theoretical frame-
work of the problem in which a real atom, as a composite
structure, interacts with the full (vector) Maxwell field is
hitherto unknown, and it is our purpose here to furnish
such a framework.

The model of a real atom we consider here involves two
oppositely charged particles of charges e1 � �e2 � e
and finite masses m1 and m2. In the center of mass frame
(atomic frame), we denote the position vectors of the two
particles by q0

1 and q0
2, and the electromagnetic scalar and

vector potentials as �0�r0� and A0�r0�, respectively. The
Lagrangian density for the electromagnetic field includ-
ing the interaction with the two charged particles is

L0 �
�0
2
f� _AA0�r0� � r0�0�r0�	2 � c2�r0 
A0�r0�	2g

� J0�r0� �A0�r0� � �0�r0��0�r0�; (1)

where the electric field is E0�r0� � �� _AA0�r0� � r0�0�r0�	,
the magnetic field is B0�r0� � r0 
A0�r�, and the current
and charge densities of the particles are given, respec-
tively, by J0�r0� � e� _qq0

1��r
0 � q0

1� � _qq0
2��r

0 � q0
2�	 and

�0�r0� � e���r0 � q0
1� � ��r0 � q0

2�	. The notation is
such that the atomic frame (the rest frame) is referred
to as S0 and all quantities relative to this frame are
primed. The laboratory frame is the unprimed frame
and will be referred to as S, relative to which the atomic
center of mass moves at velocity _RR, and all quantities
relative to S are unprimed.

The Lagrangian density in Eq. (1) can be recast in
terms of the primed center of mass coordinates, defined
by R0 � �m1q0

1 �m2q0
2�=M and q0 � q0

1 � q0
2, where

M � m1 �m2 is the atomic mass. Note that in the primed
_ 0
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gauge transformation [20] and straightforwardly obtain
the new Lagrangian density,

L0 �
�0
2
f� _AA0�r0� � r0�0�r0�	2 � c2�r0 
A0�r0�	2g

� P 0�r0� � � _AA0�r0� � r0�0�r0�	 �M0�r0�
� �r0 
A0�r0�	; (2)

where the polarization and magnetization vectors are ex-
pressed as full multipolar series in closed analytical
forms,

P 0�r0� �
X
i�1;2

ei
Z 1

0
d��q0

i�R0� ��r0�R0 � ��q0
i�R0�	;

(3)

M0�r0� �
X
i�1;2

ei
Z 1

0
d���q0

i�R0�


 _qq0
i ��r

0�R0 � ��q0
i�R0�	: (4)

The Lagrangian density in Eq. (2) has a manifestly co-
variant form, viz.,

L0 � �
�0
4
F0��F0

�� �
1

2
G0��F0

��; (5)

where in the primed S0 frame F0
�� is the well-known

electromagnetic field four-tensor [21] and G0
�� is the
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polarization field four-tensor [22]. Formally,G0�� has the
same form as F0�� but with the substitutions E0 ! P 0 and
cB0 ! �M0=c.

Lorentz invariance allows us to write the Lagrangian
density in the unprimed (laboratory) frame S exactly as in
Eq. (5), or Eq. (2), simply by removing the primes. The
total Lagrangian in the unprimed frame can now be
written by adding the familiar relativistic Lagrangian
contributions from the two particles as follows:

L � �m1c2=�� _qq1� �m2c2=�� _qq2�

�
Z
d3r

�
�0
2
�E2�r� � c2B2�r�	 � P �r� �E�r�

�M�r� �B�r�
�
; (6)

where �� _qq� � �1� _qq2=c2��1=2; the electric and magnetic
fields are given by E�r� � � _AA�r� � r��r� and B�r� �
r
A�r�. It is important to bear in mind that the un-
primed polarization and magnetization fields P �r� and
M�r� appearing in Eq. (6) are not those in Eqs. (3) and
(4). The primed polarization and magnetization fields are
rest properties and the unprimed ones are related to them
by relativistic connection rules involving a Lorentz trans-
formation of the polarization field four-tensor G�� [22].
The interaction Lagrangian density [the last two terms in
Eq. (6)] can thus be rewritten in terms of the primed
polarization and magnetization by direct substitution as
follows:
Lint �

�
P 0

k
�r0� � ��P 0

?�r
0� �

1

c2
_RR 
M0�r0�	

�
�E�r� � fM0

k
�r0� � ��M0

?�r
0� � _RR 
 P 0�r0�	g � B�r�; (7)
where the subscript k ( ? ) denotes the vector projection
parallel (perpendicular) to _RR and � � �� _RR�. The term in
Eq. (7) involving the velocity, electric polarization, and
the magnetic B field is identified as the Röntgen
Lagrangian interaction term [12–16], while the term in-
volving the velocity, magnetization, and the electric field
is identified as the Aharonov-Casher term [8,23].

Having expressed the interaction Lagrangian in terms
of the known rest atomic properties P 0 and M0, we now
turn to the particle Lagrangian terms [given by the first
two terms in Eq. (6)] and seek to express their sum in
terms of the unprimed center of mass and relative veloci-
ties, _RR and _qq, respectively, using the relations _qq1 � _RR �
�m2=M� _qq and _qq2 � _RR � �m1=M� _qq. Concentrating on the
unprimed (S) frame, we now make use of the fact that the
internal dynamics of the atom are not affected by rela-
tivistic considerations other than through _RR (i.e., the
motion of the electron around the nucleus is essentially
nonrelativistic). We may then expand the sum of the
particle Lagrangian terms up to terms quadratic in _qq to
obtain

� �m1c
2=�� _qq1� �m2c

2=�� _qq2�	

� �Mc2=�� 1
2��� _qq

2
? � �2 _qq2

k
�; (8)
where� � m1m2=M is the reduced mass. Note that in the
equality of Eq. (8) the dependence on _RR is exact. In other
words, all terms containing _RR have been retained.We now
take the step of identifying the terms containing _qq as
pertaining to the internal dynamics, in which context _RR
has to be treated as a parameter.

After making use of Eqs. (7) and (8), the new
Lagrangian emerging from Eq. (6) now becomes the
starting point of the canonical procedure with R and q
as the canonical variables for the atom and A�r� and ��r�
for the fields. The canonical momenta are P (conjugate to
R), p (conjugate to q), and ��r�, which is identified as
�D�r�, the electric displacement field, is the momentum
conjugate to A�r�, while the momentum conjugate to � is
zero. Since we are concerned with the process of sponta-
neous emission by an atom characterized by an electric
dipole moment, we may drop all interactions involving
magnetic multipoles, but retain all those involving elec-
tric polarization, including the Röntgen term. The final
Hamiltonian emerging from the canonical procedure can
be written as a sum of three terms as follows:

H � H0
a �H0

f �Hint; (9)

where
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H0
a �

����������������������������
M2c4 � P2c2

p
�

1

2��

	
p2
? �

p2
k

�2



�U�q�; (10)

H0
f �

Z
d3r

�0
2

�
1

�20

2�r� � c2B2�r�

�
; (11)

Hint �
Z
d3r

�
1

�0
�P 0

k
�r0� � �P 0

?�r
0�	 ���r� �

P
2M

� �P 0�r0� 
B�r�	 � �P 0�r0� 
 B�r�	 �
P
2M

�
:

(12)

The potential U�q� in Eq. (10) is the interparticle
Coulomb potential in the unprimed (laboratory) frame.
In the primed frame (rest frame), the interparticle
Coulomb potential, denoted as U0�q0�, arises in the multi-
polar formulation from an integral term containing the
square of the irrotational part P 0L of the polarization
field, together with infinite Coulomb self-energies:

1

2�0

Z
d3r0fP 0Lg2 � U0�q0�

� infinite Coulomb self-energies.

(13)

On disregarding the infinite Coulomb self-energies, one
then transforms the interparticle Coulomb energy U0�q0�
to obtain U�q�, the interaction in the unprimed frame.
The simplest and most direct route is by following the
force transformation argument [24] to obtain

U�q� �
U0�q0�
�

� �
e2

4 �0�q0
: (14)

The expression for H0
f given in Eq. (11) is the familiar

unperturbed field Hamiltonian which can be quantized
following the standard methods of quantization for a free
field in the laboratory frame. Finally, Hint, given in
Eq. (12) is a new form of interaction Hamiltonian which
couples the rest polarization field to electromagnetic
fields in the laboratory frame.

The eigenfunctions of the atomic Hamiltonian H0
a are

products of two parts: ��R� � eiK:R, which satisfies the
Klein-Gordon equation,

�� �h2r2 �M2c2���R� �

	
EK
c



2
��R�; (15)

with EK �
���������������������������������
M2c4 � �h2c2K2

p
, and  �q�, which satisfies

the Schrödinger equation,�
�

�h2

2��

	
@2

@q2x
�
@2

@q2y
�

1

�2

@2

@q2z



�

e2

4 �0�q
0

�
 �q��� �q�;

(16)

where, without loss of generality, we have taken the
direction of the velocity _RR to be the z direction. The total
energy is given by E�EK���

��������������������������������
M2c4� �h2c2K2

p
���

�Mc2�� with �hK��M _RR. Upon making the substitu-
tion q0z��qz in Eq. (16), we obtain a Schrödinger equa-
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tion governing the internal states of a hydrogenic atom in
the atomic frame (rest frame) S0 such that ����0, where
�0 are the internal eigenenergies in the rest frame S0.

We are now in a position to consider the energy and
momentum conservation accompanying the process of
spontaneous emission of a photon described in the un-
primed (laboratory) frame as having wave vector k and
frequency ! when the internal energy of the atom
changes from �i to �f. Conservation of momentum re-
quires that we have Kf � Ki � k, where Ki � �M _RR= �h
is the initial center of mass wave vector, and Kf is the
final wave vector in the laboratory frame. Conservation of
energy, on the other hand, demands that we have

! �
1

�h
��i � �f � EKi � EKf �

’
1

�h�
��0i � �0f� �

�h
�M

�Ki � k� �
!0

0

�
� _RR � k; (17)

where �h!0
0 is the energy level difference in the primed

(rest) frame S0, and we have ignored the second order
recoil energy. Note that Eq. (17) is equivalent to a Doppler
shift in the photon frequency.

Two cases in the calculation of the spontaneous emis-
sion rate will have to be considered relative to the labo-
ratory (unprimed) frame S, namely, (i) when the dipole
moment vector is parallel to the velocity vector and
(ii) when the dipole moment vector is perpendicular to
the velocity vector. If these two calculations yield exactly
the same result, then the spontaneous emission is deemed
to be isotropic, i.e., free from angular dependence.
Imposing the electric dipole approximation, P 0�r0� �
d0��r0 �R0�, where d0 � eq0, we obtain for the transition
matrix element squared, with Hint as given in Eq. (12) as
the interaction,

jMEj2 � d02
�������Ek�R�

�
�

�
E?�R� �

1

2

	
2 _RR �

�hk
�M





 B�R�

��������
2
; (18)

where only transverse (i.e., divergence-free) electromag-
netic fields are involved and we have written E instead of
��=�0, anticipating free-space quantization [25]. The
photon momentum is much smaller than the particle
momentum and may be ignored.

The free-space normalized electromagnetic fields can
be obtained straightforwardly, remembering that we
should identify two orthogonal wave polarizations. We
choose the z direction, i.e., along _RR, as the axis along
which there will be either a magnetic field (i.e., transverse
electric or TE, ) � 1) or an electric field (i.e., transverse
magnetic or TM, ) � 2). We can then write for a given
wave vector k � �k; +;�� the following electric and mag-
netic fields in a normalization volume V:
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ETM
k �r� �

	
�h!

2V�0



1=2

�cos�+� cos���x̂x � cos�+� sin���ŷy

� sin�+�ẑz	ei�k:r�!t� � cBTE
k �r�;

BTM
k �r� �

	
�h!

2V�0c2



1=2

�sin���x̂x � cos���ŷy	ei�k�r�!t�

�
ETE

k �r�
c

: (19)

Turning finally to the Fermi golden rule formula in the
unprimed (laboratory) frame S, we find that the sponta-
neous emission rate can be written as

� �
2 

�h2
X
k;)

jMEj2��!�!0
0=�� _RRk cos�+�	

�
V

4 2 �h2
X
)

Z  

0
d+

Z 2 

0
d�

!03
0 jMEj

2

�3c3�1� _RR cos�+�=c	4
:

(20)

Substituting for the matrix element squared from Eq. (18)
and the electric and magnetic fields from Eq. (19), we find
that the spontaneous emission rate for a dipole parallel
and perpendicular to the velocity in the laboratory frame
S are given, respectively, by

�k � �0
0

Z 1

�1
dx

3�1� x2�

4�5�1� _RRx=c�4
�

�0
0

�
; (21)

�? � �0
0

Z 1

�1
dx

3��1� _RR2=c2��1� x2� � 4 _RRx=c	

8�3�1� _RRx=c�4
�

�0
0

�
;

(22)

where �0
0 � d02!03

0 =�3 �0 �hc
3� is the free-space rate of

spontaneous emission of the atom in the atomic rest
frame S0. It is seen that there is no angular dependence,
i.e., the rate of spontaneous emission is isotropic, and it
does indeed vary like a relativistic clock.

The authors are grateful to Professor G. Barton for
useful discussions.
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